Acoustic emission evaluation of composite wind turbine blades during fatigue testing

1997 ◽  
Vol 30 (2) ◽  
pp. 111
Author(s):  
Nikolaos K. Tsopelas ◽  
Dimitrios G. Papasalouros ◽  
Athanasios A. Anastasopoulos ◽  
Dimitrios A. Kourousis ◽  
Jason W. Dong

Author(s):  
P. A. Joosse ◽  
M. J. Blanch ◽  
A. G. Dutton ◽  
D. A. Kouroussis ◽  
T. P. Philippidis ◽  
...  

Wind turbine blade certification tests, comprising a static test, a fatigue test, and finally a residual strength test, often involve sudden audible cracking sounds from somewhere within the blade, without the operators being able to locate the noise source, or to determine whether damage (minor or major) has occurred. A current EC-funded research project is looking at the possibility of using acoustic emission (AE) monitoring during testing of fibre composite blades to detect such events and assess the blade condition. AE can both locate and characterise damage processes in blades, starting with non-audible signals occurring due to damage propagation at relatively low loads. The test methodology is discussed in the context of the blade certification procedure and results are presented from a series of static and fatigue blade tests to failure in the laboratory. Inferences are drawn about small differences in the manufacture of the nominally identical blades and conclusions are presented for the application of the methodology.


Author(s):  
Michael Desmond ◽  
Darris White

Static and fatigue structural testing of wind turbine blades provides manufacturers with quantitative details in order to improve designs and meet certification requirements. Static testing entails applying extreme load cases through a combination of winches and weights to determine the ultimate strength of the blade while fatigue testing entails applying the operating design loads through forced hydraulics or resonant excitation systems over the life cycle of the blade to determine durability. Recently, considerable efforts have been put forth to characterize the reactions of wind turbine blades during structural testing in order to develop load and deflection predictions for the next generation of blade test facilities. Incorporating years of testing experience with historical test data from several wind turbine blades, curve fits were developed to extrapolate properties for blades up to one hundred meters in length. Furthermore, conservative assumptions were employed to account for blade variations due to inconsistent manufacturing processes. In short, this paper will outline the predictions of wind turbine blade loads and deflections during static and fatigue structural testing.


Author(s):  
Peter R Greaves ◽  
Robert G Dominy ◽  
Grant L Ingram ◽  
Hui Long ◽  
Richard Court

Full-scale fatigue testing is part of the certification process for large wind turbine blades. That testing is usually performed about the flapwise and edgewise axes independently but a new method for resonant fatigue testing has been developed in which the flapwise and edgewise directions are tested simultaneously, thus also allowing the interactions between the two mutually perpendicular loads to be investigated. The method has been evaluated by comparing the Palmgren–Miner damage sum around the cross-section at selected points along the blade length that results from a simulated service life, as specified in the design standards, and testing. Bending moments at each point were generated using wind turbine simulation software and the test loads were designed to cause the same amount of damage as the true service life. The mode shape of the blade was tuned by optimising the position of the excitation equipment, so that the bending moment distribution was as close as possible to the target loads. The loads were converted to strain–time histories using strength of materials approach, and fatigue analysis was performed. The results show that if the bending moment distribution is correct along the length of the blade, then dual-axis resonant testing tests the blade much more thoroughly than sequential tests in the flapwise and edgewise directions. This approach is shown to be more representative of the loading seen in service and can thus contribute to a potential reduction in the weight of wind turbine blades and the duration of fatigue tests leading to reduced cost.


Author(s):  
N Tsopelas ◽  
D Kourousis ◽  
I Ladis ◽  
A Anastasopoulos ◽  
D Lekou ◽  
...  

Author(s):  
Darris White ◽  
Michael Desmond ◽  
Waleed Gowharji ◽  
Jenna A. Beckwith ◽  
Kenneth J. Meierjurgen

Collaborative efforts between Embry-Riddle Aeronautical University (ERAU) and the National Renewable Energy Laboratories (NREL) have resulted in an innovative dual-axis phase-locked resonant excitation (PhLEX) test method for fatigue testing of wind turbine blades. The Dual-axis phase-locked test method has shown to provide more realistic load application as compared to wind loading experienced through field operation conditions. The current concepts involved exciting the blade at its fundamental edgewise natural frequency while applying a force in the flap direction at that same frequency. This advanced test method incorporates existing commercially available test hardware, known as the Universal Resonant Excitation (UREX), combined with an additional hydraulically actuated member to dynamically force the blade using adaptive algorithms and advanced control strategies in order to provide cycle-to-cycle phase control and decreased testing time. In short, this paper will outline the development of a finite element model for predicting performance and evaluation of the results.


2020 ◽  
Vol 19 (6) ◽  
pp. 1711-1725 ◽  
Author(s):  
Jaclyn Solimine ◽  
Christopher Niezrecki ◽  
Murat Inalpolat

This article details the implementation of a novel passive structural health monitoring approach for damage detection in wind turbine blades using airborne sound. The approach utilizes blade-internal microphones to detect trends, shifts, or spikes in the sound pressure level of the blade cavity using a limited network of internally distributed airborne acoustic sensors, naturally occurring passive system excitation, and periodic measurement windows. A test campaign was performed on a utility-scale wind turbine blade undergoing fatigue testing to demonstrate the ability of the method for structural health monitoring applications. The preliminary audio signal processing steps used in the study, which were heavily influenced by those methods commonly utilized in speech-processing applications, are discussed in detail. Principal component analysis and K-means clustering are applied to the feature-space representation of the data set to identify any outliers (synonymous with deviations from the normal operation of the wind turbine blade) in the measurements. The performance of the system is evaluated based on its ability to detect those structural events in the blade that are identified by making manual observations of the measurements. The signal processing methods proposed within the article are shown to be successful in detecting structural and acoustic aberrations experienced by a full-scale wind turbine blade undergoing fatigue testing. Following the assessment of the data, recommendations are given to address the future development of the approach in terms of physical limitations, signal processing techniques, and machine learning options.


Sign in / Sign up

Export Citation Format

Share Document