Copper tolerance of brown-rot fungi: time course of oxalic acid production

2003 ◽  
Vol 51 (2) ◽  
pp. 145-149 ◽  
Author(s):  
Frederick Green III ◽  
Carol A Clausen
1991 ◽  
Vol 57 (7) ◽  
pp. 1980-1986 ◽  
Author(s):  
Eduardo Espejo ◽  
Eduardo Agosin

2000 ◽  
Vol 46 (1) ◽  
pp. 69-76 ◽  
Author(s):  
C.A Clausen ◽  
F Green ◽  
B.M Woodward ◽  
J.W Evans ◽  
R.C DeGroot

Holzforschung ◽  
1999 ◽  
Vol 53 (6) ◽  
pp. 563-568 ◽  
Author(s):  
Frederick Green ◽  
Carol A. Clausen

SummaryHydrolysis of bordered and pinoid pits may be a key event during colonization of wood by decay fungi. Although pits are numerous, studies of pectin-hydrolyzing enzymes in wood decay fungi are scarce, probably because of the relatively low content (less than 4 %) of pectin in wood and because of the primary focus on understanding the degradation of lignified components. Endopolygalacturonase (endo- PG) activity was estimated by cup-plate assay and viscosity reduction of pectin from liquid cultures of fifteen brown-rot and eight white-rot basidiomycetous fungi using sodium polypectate as the carbon source. Oxalic acid was estimated in liquid culture and related to mycelial weight of each fungus. Changes in longitudinal gas permeability of southern pine cores exposed to selected decay fungi in liquid culture were measured to determine the extent of hydrolysis of bordered pits. Twelve of fifteen brown-rot and six of eight white-rot fungi tested were positive for at least one of the polygalacturonase test methods. Accumulation of oxalic acid was detected in thirteen of fifteen brown-rot isolates and none of the white-rot fungi tested. Gas permeability of pine cores increased approximately fourfold among brown-rot fungi tested and eighteenfold among white-rot fungi tested. Scanning electron microscopy revealed bordered pit membrane hydrolysis in cores colonized by white-rot fungi, but only torus damage, weakening and tearing of the pit membranes, was observed in cores exposed to brown-rot fungi. We conclude that both brown- and white-rot decay fungi have the enzymatic capacity to hydrolyze pectin, damage bordered pit membranes, and increase wood permeability during colonization and incipient decay.


Holzforschung ◽  
2006 ◽  
Vol 60 (3) ◽  
pp. 339-345 ◽  
Author(s):  
Anne Christine Steenkjær Hastrup ◽  
Bo Jensen ◽  
Carol Clausen ◽  
Frederick Green III

AbstractThe dry rot fungus,Serpula lacrymans, is one of the most destructive copper-tolerant fungi causing timber decay in buildings in temperate regions. Calcium and oxalic acid have been shown to play important roles in the mechanism of wood decay. The effect of calcium on growth and decay was evaluated for 12 strains ofS. lacrymansand compared to five brown-rot fungi. This was done by treating copper citrate (CC)-treated Southern yellow pine (SYP) wood with a CaCl2solution and estimating the decay rate and amount of soluble oxalic acid in an ASTM soil block test. Decay byS. lacrymanswas found to be significantly inhibited by treatment with CaCl2in the presence of copper. In addition, calcium showed no effect on two strains ofS. lacrymansand oneSerpula himantioidesstrain in non-copper-treated SYP wood blocks. The growth rate ofS. lacrymanswas not affected on malt extract agar containing CaCl2. In summary, a marked decrease was observed in the decay capacity ofS. lacrymansin pine treated with CC+CaCl2. The amount of soluble oxalic acid was measured in CC-treated blocks and blocks also treated with CaCl2. Of the comparative brown-rot fungi, bothAntrodia vaillantii(TFFH 294) andPostia placenta(Mad 698) displayed notable wood decay despite CaCl2treatment, while the remaining strains were inhibited.


Holzforschung ◽  
2014 ◽  
Vol 68 (6) ◽  
pp. 685-691 ◽  
Author(s):  
Yong-Seok Choi ◽  
Jae-Jin Kim ◽  
Tsuyoshi Yoshimura ◽  
Gyu-Hyeok Kim

Abstract The objective of this study was to evaluate characteristics of oxalic acid (OA) production and metal removal during degradation of CCA-treated wood in nutrient culture by brown-rot fungi. Two brown-rot fungi, Crustoderma sp. and Fomitopsis palustris extensively degraded the CCA-treated wood, causing mass losses (MLs) up to 49.0% and 43.5%, respectively, while these fungi produced OA during degradation up to 21.3 mg g-1 and 43.8 mg g-1, respectively. Antrodia vaillantii and Polyporales sp. produced OA up to 28.9 mg g-1 and 29.8 mg g-1, respectively, with <3% ML. Fomitopsis palustris with the highest OA production removed effectively 87.5% As and 86.0% Cr during degradation of the treated wood. Antrodia vaillantii and an unknown Polyporales sp. showed notable As removal rates of 90.3% and 88.9%, respectively, and 81.0–83.9% Cr removal. However, only moderate amounts of Cu (40.8%) were extracted by the fungi investigated. The conclusion is that OA production by brown-rot fungi can be partially associated with removal of Cr and As during fungal degradation of CCA-treated wood.


2012 ◽  
Vol 75 ◽  
pp. 109-114 ◽  
Author(s):  
Anne Christine Steenkjær Hastrup ◽  
Frederick Green ◽  
Patricia K. Lebow ◽  
Bo Jensen

1995 ◽  
Vol 11 (5) ◽  
pp. 519-524 ◽  
Author(s):  
F. Green ◽  
C. A. Clausen ◽  
T. A. Kuster ◽  
T. L. Highley

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 668
Author(s):  
Justine Oma Angadam ◽  
Seteno Karabo Obed Ntwampe ◽  
Boredi Silas Chidi ◽  
Jun Wei Lim ◽  
Vincent Ifeanyi Okudoh

Human endeavors generate a significant quantity of bio-waste, even lignocellulosic waste, due to rapid industrialization and urbanization, and can cause pollution to aquatic ecosystems, and contribute to detrimental animal and human health because of the toxicity of consequent hydrolysis products. This paper contributes to a new understanding of the lignocellulosic waste bio-pretreatment process from a literature review, which can provide better biorefinery operational outcomes. The simultaneous partial biological lignin, cellulose and hemicellulose lysis, i.e., simultaneous semi-lignino-holocellulolysis, is aimed at suggesting that when ligninolysis ensues, holocellulolysis is simultaneously performed for milled lignocellulosic waste instead of having a sequential process of initial ligninolysis and subsequent holocellulolysis as is currently the norm. It is presumed that such a process can be solely performed by digestive enzyme cocktails from the monkey cups of species such as Nepenthes, white and brown rot fungi, and some plant exudates. From the literature review, it was evident that the pretreatment of milled lignocellulosic waste is largely incomplete, and ligninolysis including holocellulolysis ensues simultaneously when the waste is milled. It is further proposed that lignocellulosic waste pretreatment can be facilitated using an environmentally friendly approach solely using biological means. For such a process to be understood and applied on an industrial scale, an interdisciplinary approach using process engineering and microbiology techniques is required.


Sign in / Sign up

Export Citation Format

Share Document