Spatial patterns in phytoplankton growth and microzooplankton grazing in the Arabian Sea during monsoon forcing

1998 ◽  
Vol 45 (10-11) ◽  
pp. 2353-2368 ◽  
Author(s):  
Michael R. Landry ◽  
Susan L. Brown ◽  
Lisa Campbell ◽  
John Constantinou ◽  
Hongbin Liu
PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e69159 ◽  
Author(s):  
Carlos Cáceres ◽  
Fernando González Taboada ◽  
Juan Höfer ◽  
Ricardo Anadón

2012 ◽  
Vol 9 (11) ◽  
pp. 16005-16032
Author(s):  
B. Chen ◽  
L. Zheng ◽  
B. Huang ◽  
S. Song ◽  
H. Liu

Abstract. We conducted a comprehensive investigation on the microzooplankton herbivory effect on phytoplankton in the northern South China Sea (SCS) using the seawater dilution technique at surface and deep chlorophyll maximum (DCM) layers in two cruises (July–August of 2009 and January of 2010). We compared vertical (surface vs. DCM), spatial (onshore vs. offshore), and seasonal (summer vs. winter) differences of phytoplankton growth (μ0) and microzooplankton grazing rates (m). During summer, both μ0 and m were significantly higher at the surface than at the layer of DCM, which was below the mixed layer. During winter, surface μ0 was significantly higher than at DCM, while m was not significantly different between the two layers, both of which were contained within the mixed layer. Surface μ0 was, on average, significantly higher in summer than in winter; while average surface m was not different between the two seasons. There were no significant cross-shelf trends of μ0 in summer or winter surface waters. In surface waters, μ0 was not correlated with ambient nitrate concentrations and the effect of nutrient enrichment on phytoplankton growth was not pronounced. There was a decreasing trend of m from shelf to basin surface waters in summer, but not in winter. Microzooplankton grazing effect on phytoplankton (m/μ0) did not increase with distance offshore, suggesting that the importance of microzooplankton as grazers of phytoplankton may not decrease in onshore waters. On average, microzooplankton grazed 73% and 65% of the daily primary production in summer and winter, respectively.


2015 ◽  
Vol 12 (22) ◽  
pp. 6809-6822 ◽  
Author(s):  
L. Zhou ◽  
Y. Tan ◽  
L. Huang ◽  
Z. Hu ◽  
Z. Ke

Abstract. To examine seasonal and size-dependent variations in the phytoplankton growth and microzooplankton grazing in oligotrophic tropical waters under the influence of seasonal reversing monsoon, dilution experiments were conducted during the summer of 2009 (21 May to 9 June) and winter 2010 (9 to 18 November) in the southern South China Sea (SSCS). The results showed that environmental variables, phytoplankton biomass, phytoplankton growth rate (μ), microzooplankton grazing rate (m), and correlationship (coupling) between the μ and m, rather than the microzooplankton grazing impact on phytoplankton (m/μ) significantly varied between the two seasons. Higher relative preference index (RPI) for the larger-sized (> 3 μm) phytoplankton than pico-phytoplankton (< 3 μm), indicating significant size-selective grazing by microzooplankton on the larger-sized phytoplankton, were also observed. The μ and m were significantly correlated with seawater salinity and temperature, and phytoplankton biomass, which indicated that salient seasonal variations in the phytoplankton growth and microzooplankton grazing in the SSCS were closely related to the environmental variables under the influence of the East Asian monsoon. We propose that intermittent arrivals of the northeast winter monsoon could lead to the low μ and m, and the decoupling between the μ and m in the SSCS, through influencing nutrient supply to the surface water, and inducing surface seawater salinity decrease. The low m/μ (< 50 % on average) indicates low remineralization of organic matter mediated by microzooplankton and mismatch between the μ and m, and thus probably accounts for part of the high vertical biogenic particle fluxes in the prevailing periods of the monsoons in the SSCS. The size-selective grazing suggests that microzooplankton grazing partially contributes to the pico-phytoplankton dominance in the oligotrophic tropical waters such as that of the SSCS.


2011 ◽  
Vol 442 ◽  
pp. 11-22 ◽  
Author(s):  
A Calbet ◽  
K Riisgaard ◽  
E Saiz ◽  
S Zamora ◽  
C Stedmon ◽  
...  

2018 ◽  
Vol 28 (1) ◽  
pp. 225-235 ◽  
Author(s):  
Panpan Liu ◽  
Long Wang ◽  
Xue Xia ◽  
Lei Zeng ◽  
Qiaohong Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document