scholarly journals Large Amplitude Flexural Vibration of the Orthotropic Composite Plate Embedded with Shape Memory Alloy Fibers

2007 ◽  
Vol 20 (5) ◽  
pp. 415-424 ◽  
Author(s):  
Ren Yongsheng ◽  
Sun Shuangshuang
2014 ◽  
Vol 11 (1) ◽  
pp. 25-39 ◽  
Author(s):  
Ermira J. Abdullah ◽  
Dayang L. Majid ◽  
Fairuz I. Romli ◽  
Priyanka S. Gaikwad ◽  
Lim G. Yuan ◽  
...  

2013 ◽  
Vol 393 ◽  
pp. 655-660 ◽  
Author(s):  
Izzuddin Zaman ◽  
Bukhari Manshoor ◽  
Amir Khalid ◽  
Sherif Araby ◽  
Mohd Imran bin Ghazali

Unique functional material of shape memory alloy has attracted tremendous interest from researches, thus has been broadly investigated for a wide range application. Current research effort extends the use of SMA for the design of smart composite structures due to its shape memory effect, pseudo-elasticity and high damping capability. This paper presents an assessment of applications of the SMA materials for structural vibration controls, where the influences of SMA as reinforcement in the composite plate at different temperature are investigated. Four cases of composite plate are studied, which two of them are SMA-based composite fabricated at 0° and 45° angles, and the other two plates are neat (without SMA wires) and built with local stiffener. By using modal testing, the free vibration analysis is carried out to determine the vibration characteristics of composite plates. The results show that infusing SMA wires into composites increased the natural frequencies of the plate considerably, while decreased slightly for damping percentage. However, when SMA wires are heated, the damping percentage improved tremendously due to the phase transformation temperature of SMA from martensite to austenite. The outcome of this study reveals the potential of SMA materials in active vibration control.


Author(s):  
Yatendra Saraswat, Et. al.

In this article, we analyze the strength and buckling response in the plane shear load fixed at the corner of the composite plate. The fem is formulated is done on the basis of first-order shear deformation theory and assumptions of von Karman. The Newton-Raphson technique is considered to analyze the non-linearity algebraic equation. The effect of shape memory alloy in shear load and buckling response is discussed. In this study we analyze the two cases in the first simple carbon/epoxy plate is analyze and then we use the shape memory wire embedded in the plate which is about 1% of the volume of the plate and studies the buckling response effect on the plate. In the second case we use Shape Memory Alloy plate and loading but a circular cutout at the middle of the plate this case we analyze for both with the use of shape memory alloy and without the use of shape memory. It is observed that the shape memory alloy increases the strength of the plate in both cases. The whole simulations are done using Ansys workbench software v 2020R2.


Sign in / Sign up

Export Citation Format

Share Document