MIMO-OFDM channel estimation method utilizing correlation in time domain for B3G-TDD uplink

Author(s):  
Ming-yu ZHOU ◽  
Li-hua LI ◽  
Jun JIANG ◽  
Ming-hua ZHONG ◽  
Xiao-feng TAO
2019 ◽  
Vol 5 (3) ◽  
pp. 6 ◽  
Author(s):  
Neha Dubey ◽  
Ankit Pandit

In wireless communication, orthogonal frequency division multiplexing (OFDM) plays a major role because of its high transmission rate. Channel estimation and tracking have many different techniques available in OFDM systems. Among them, the most important techniques are least square (LS) and minimum mean square error (MMSE). In least square channel estimation method, the process is simple but the major drawback is it has very high mean square error. Whereas, the performance of MMSE is superior to LS in low SNR, its main problem is it has high computational complexity. If the error is reduced to a very low value, then an exact signal will be received. In this paper an extensive review on different channel estimation methods used in MIMO-OFDM like pilot based, least square (LS) and minimum mean square error method (MMSE) and least minimum mean square error (LMMSE) methods and also other channel estimation methods used in MIMO-OFDM are discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Ruo-Nan Yang ◽  
Wei-Tao Zhang ◽  
Shun-Tian Lou

In order to track the changing channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems, it is prior to estimate channel impulse response adaptively. In this paper, we proposed an adaptive blind channel estimation method based on parallel factor analysis (PARAFAC). We used an exponential window to weight the past observations; thus, the cost function can be constructed via a weighted least squares criterion. The minimization of the cost function is equivalent to the decomposition of third-order tensor which consists of the weighted OFDM data symbols. To reduce the computational load, we adopt a recursive singular value decomposition method for tensor decomposition; then, the channel parameters can be estimated adaptively. Simulation results validate the effectiveness of the proposed algorithm under diverse signalling conditions.


Author(s):  
Tanairat Mata ◽  
Mio Hourai ◽  
Kazuo Mori ◽  
Hideo Kobayashi ◽  
Pisit Boonsrimuang

Sign in / Sign up

Export Citation Format

Share Document