Copper homeostasis and aging in the fungal model system Podospora anserina: differential expression of PaCtr3 encoding a copper transporter

2002 ◽  
Vol 34 (11) ◽  
pp. 1355-1371 ◽  
Author(s):  
Corina Borghouts ◽  
Christian Q Scheckhuber ◽  
Oliver Stephan ◽  
Heinz D Osiewacz
Cell Reports ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. 933-943 ◽  
Author(s):  
Christopher J. Hlynialuk ◽  
Binbing Ling ◽  
Zakery N. Baker ◽  
Paul A. Cobine ◽  
Lisa D. Yu ◽  
...  

2015 ◽  
Vol 309 (10) ◽  
pp. C660-C668 ◽  
Author(s):  
Victoria L. Hodgkinson ◽  
Sha Zhu ◽  
Yanfang Wang ◽  
Erik Ladomersky ◽  
Karen Nickelson ◽  
...  

Menkes disease is a fatal neurodegenerative disorder arising from a systemic copper deficiency caused by loss-of-function mutations in a ubiquitously expressed copper transporter, ATP7A. Although this disorder reveals an essential role for copper in the developing human nervous system, the role of ATP7A in the pathogenesis of signs and symptoms in affected patients, including severe mental retardation, ataxia, and excitotoxic seizures, remains unknown. To directly examine the role of ATP7A within the central nervous system, we generated Atp7a Nes mice, in which the Atp7a gene was specifically deleted within neural and glial cell precursors without impairing systemic copper homeostasis, and compared these mice with the mottled brindle ( mo-br) mutant, a murine model of Menkes disease in which Atp7a is defective in all cells. Whereas mo-br mice displayed neurodegeneration, demyelination, and 100% mortality prior to weaning, the Atp7a Nes mice showed none of these phenotypes, exhibiting only mild sensorimotor deficits, increased anxiety, and susceptibility to NMDA-induced seizure. Our results indicate that the pathophysiology of severe neurological signs and symptoms in Menkes disease is the result of copper deficiency within the central nervous system secondary to impaired systemic copper homeostasis and does not arise from an intrinsic lack of ATP7A within the developing brain. Furthermore, the sensorimotor deficits, hypophagia, anxiety, and sensitivity to NMDA-induced seizure in the Atp7a Nes mice reveal unique autonomous requirements for ATP7A in the nervous system. Taken together, these data reveal essential roles for copper acquisition in the central nervous system in early development and suggest novel therapeutic approaches in affected patients.


2020 ◽  
Vol 14 (1) ◽  
pp. dmm045963
Author(s):  
Amika Singla ◽  
Qing Chen ◽  
Kohei Suzuki ◽  
Jie Song ◽  
Alina Fedoseienko ◽  
...  

ABSTRACTCopper is an essential transition metal for all eukaryotes. In mammals, intestinal copper absorption is mediated by the ATP7A copper transporter, whereas copper excretion occurs predominantly through the biliary route and is mediated by the paralog ATP7B. Both transporters have been shown to be recycled actively between the endosomal network and the plasma membrane by a molecular machinery known as the COMMD/CCDC22/CCDC93 or CCC complex. In fact, mutations in COMMD1 can lead to impaired biliary copper excretion and liver pathology in dogs and in mice with liver-specific Commd1 deficiency, recapitulating aspects of this phenotype. Nonetheless, the role of the CCC complex in intestinal copper absorption in vivo has not been studied, and the potential redundancy of various COMMD family members has not been tested. In this study, we examined copper homeostasis in enterocyte-specific and hepatocyte-specific COMMD gene-deficient mice. We found that, in contrast to effects in cell lines in culture, COMMD protein deficiency induced minimal changes in ATP7A in enterocytes and did not lead to altered copper levels under low- or high-copper diets, suggesting that regulation of ATP7A in enterocytes is not of physiological consequence. By contrast, deficiency of any of three COMMD genes (Commd1, Commd6 or Commd9) resulted in hepatic copper accumulation under high-copper diets. We found that each of these deficiencies caused destabilization of the entire CCC complex and suggest that this might explain their shared phenotype. Overall, we conclude that the CCC complex plays an important role in ATP7B endosomal recycling and function.


2006 ◽  
Vol 17 (1) ◽  
pp. 475-484 ◽  
Author(s):  
Melanie Norgate ◽  
Esther Lee ◽  
Adam Southon ◽  
Ashley Farlow ◽  
Philip Batterham ◽  
...  

Defects in the mammalian Menkes and Wilson copper transporting P-type ATPases cause severe copper homeostasis disease phenotypes in humans. Here, we find that DmATP7, the sole Drosophila orthologue of the Menkes and Wilson genes, is vital for uptake of copper in vivo. Analysis of a DmATP7 loss-of-function allele shows that DmATP7 is essential in embryogenesis, early larval development, and adult pigmentation and is probably required for copper uptake from the diet. These phenotypes are analogous to those caused by mutation in the mouse and human Menkes genes, suggesting that like Menkes, DmATP7 plays at least two roles at the cellular level: delivering copper to cuproenzymes required for pigmentation and neuronal function and removing excess cellular copper via facilitated efflux. DmATP7 displays a dynamic and unexpected expression pattern in the developing embryo, implying novel functions for this copper pump and the lethality observed in DmATP7 mutant flies is the earliest seen for any copper homeostasis gene.


2013 ◽  
Vol 12 (12) ◽  
pp. 1641-1652 ◽  
Author(s):  
Srijana Upadhyay ◽  
Guadalupe Torres ◽  
Xiaorong Lin

ABSTRACTAspergillus fumigatusproduces heavily melanized infectious conidia. The conidial melanin is associated with fungal virulence and resistance to various environmental stresses. This 1,8-dihydroxynaphthalene (DHN) melanin is synthesized by enzymes encoded in a gene cluster inA. fumigatus, including two laccases, Abr1 and Abr2. Although this gene cluster is not conserved in all aspergilli, laccases are critical for melanization in all species examined. Here we show that the expression ofA. fumigatuslaccases Abr1/2 is upregulated upon hyphal competency and drastically increased during conidiation. The Abr1 protein is localized at the surface of stalks and conidiophores, but not in young hyphae, consistent with the gene expression pattern and its predicted role. The induction of Abr1/2 upon hyphal competency is controlled by BrlA, the master regulator of conidiophore development, and is responsive to the copper level in the medium. We identified a developmentally regulated putative copper transporter, CtpA, and found that CtpA is critical for conidial melanization under copper-limiting conditions. Accordingly, disruption of CtpA enhanced the induction ofabr1andabr2, a response similar to that induced by copper starvation. Furthermore, nonpigmentedctpAΔ conidia elicited much stronger immune responses from the infected invertebrate hostGalleria mellonellathan the pigmentedctpAΔ or wild-type conidia. Such enhancement in elicitingGalleriaimmune responses was independent of thectpAΔ conidial viability, as previously observed for the DHN melanin mutants. Taken together, our findings indicate that both copper homeostasis and developmental regulators control melanin biosynthesis, which affects conidial surface properties that shape the interaction between this pathogen and its host.


2020 ◽  
Vol 70 (4) ◽  
pp. 469-475
Author(s):  
Katie M. Ohno ◽  
Amy B. Bishell ◽  
Glen R. Stanosz

Abstract Living organisms require copper for several cellular processes. Yet intracellular concentrations of copper must be regulated to avoid toxicity. Not much is known about mechanisms of copper regulation in wood decay fungi. However, one putative annotation for a copper homeostasis CutC gene (FIBRA_00129), found in other brown-rot wood decay fungi, has been annotated in Fibroporia radiculosa. The aim of this study was to evaluate wood mass loss and differential expression of FIBRA_00129 during initial decay of untreated and copper-treated wood by two copper-tolerant F. radiculosa isolates (FP-90848-T and L-9414-SP) compared with copper-sensitive Gloeophyllum trabeum. Untreated southern pine (Pinus spp.) and ammoniacal copper citrate treated southern pine at three concentrations (0.6%, 1.2%, and 2.4%) were used in a 4-week-long standard decay test. Results showed G. trabeum was unable to decay copper-treated wood while both F. radiculosa isolates successfully decayed southern pine at all copper concentrations. G. trabeum and F. radiculosa L-9414-SP showed no detectable FIBRA_00129 expression over the course of this study. F. radiculosa FP-90848-T showed greater FIBRA_00129 downregulation on copper-treated wood than on untreated wood (P = 0.003). Additionally, there was greater FIBRA_00129 downregulation in F. radiculosa FP-90848-T at week 3 compared with other weeks (P = 0.015). Future studies are needed to further evaluate FIBRA_00129 during the decay process to determine its potential role in copper-tolerance.


2018 ◽  
Author(s):  
◽  
Vinit C. Shanbhag

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Copper is a trace metal with a ready capacity to gain or donate electrons. This property is harnessed by numerous enzymes to perform vital functions in the body. In humans, copper is required for various biochemical processes, including cellular respiration, connective tissue development, iron transport and pigmentation. The same redox property that makes copper useful can also have deleterious effects if the proper balance is not maintained. Cellular copper homeostasis is maintained by several different proteins, including CTR1 (copper transporter 1), a high affinity copper importer, as well as ATP7A and ATP7B copper exporting ATPases. ATP7A controls the cellular export of copper and this function of ATP7A is largely regulated by its subcellular localization. Under low intracellular copper concentrations, ATP7A protein is localized to the TGN (trans-Golgi network), where it transports copper to newly synthesized cuproenzymes. Under elevated intracellular copper concentrations, ATP7A traffics to the plasma membrane, subsequently releasing its copper load by fusion with the plasma membrane. To maintain copper homeostasis, ATP7A undergoes constitutive trafficking between the TGN and the plasma membrane. Several key regions in the protein are required for its internalization and successful retrieval from the plasma membrane. Previous studies had shown that a single di-leucine motif in the cytoplasmic tail of ATP7A was required for its internalization. It is hypothesized that multiple di-leucines in the carboxy-terminus of ATP7A are involved in the internalization of the protein. The study presented in this thesis, identified a second di-leucine motif in ATP7A that is a bonafide sorting signal sequence required for internalization and maintaining the steady state localization of the protein. ... Taken together, these findings identify roles for the ATP7A copper transporter at the nexus of platinum-drug resistance, tumorigenesis and metastatic pathways, underscoring its potential as a therapeutic drug target at multiple stages of carcinogenesis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3966-3966
Author(s):  
David K Edwards ◽  
Venkata D Yellapantula ◽  
Kristi Allen ◽  
Wen Yu Wong ◽  
Jessica Albanese ◽  
...  

Abstract Abstract 3966 The drug treatments currently available for multiple myeloma patients are dramatic improvements over historical regimens, stopping or slowing cancer growth in 80–90% of patients and leading to complete remission in approximately 40% of patients. Many of the new treatment regimens include “novel agents” in combination with dexamethasone, one of the most effective agents used to treat myeloma. The direct mechanism by which dexamethasone works in myeloma is not well characterized but it is assumed that it activates glucocorticoid receptors which results in gene expression changes that promote apoptosis in lymphoid cells. However, often the disease becomes resistant to dexamethasone, and the mechanism for this resistance is not entirely known. To study the mechanism of resistance, two isogenic cell lines, MM.1R and MM.1S, were independently created from the parental cell line MM.1 to represent models of resistance and sensitivity, respectively, to dexamethasone. This model system was created by Steve Rosen and colleagues in the 1990s and was recently deposited in ATCC. Previous studies have demonstrated differential expression of the glucocorticoid receptor NR3C1 but have not precisely identified the genetic difference between MM.1R and MM.1S across the whole genome. To better understand the mechanism behind the differences in drug sensitivity between these isogenic cell lines, we performed extensive characterization of MM.1R and MM.1S. We purchased both lines from ATCC and analyzed each using flow cytometry, CGH, CGH-SNP, mRNA sequencing, and exome sequencing. First, we broadly examined both cell lines, demonstrating a 300,000-fold difference in IC50 of MM.1R to MM.1S after 6 days of dexamethasone treatment. No significant ploidy difference was found between the two lines by flow cytometry analysis. Our CGH results identified 4 copy number differences unique to MM.1R (chr2:p37.1–37.3 deletion, chr4:q32.3–33 deletion, chr5:31.3 deletion, and chr7:q36.3 amplification), the third of which suggested a possible homozygous deletion within NR3C1. To confirm this deletion, we designed primer sets at ∼1kb intervals spanning the entire NR3C1 gene and performed PCR on MM.1R and MM.1S. Our results indicate the presence of a ∼5–8kb deletion of NR3C1 in MM.1R. Additionally, we analyzed our mRNA sequencing data using TopHat-Fusion and identified an inverted fusion between NR3C1 and ARHGAP26, which we confirmed through PCR amplification and Sanger sequencing. From mRNA sequencing, we identified 63 genes with differential expression between MM.1R and MM.1S (FPKM > 5 in either cell line and greater than fourfold change between them). These results demonstrate a reduction in expression of NR3C1 caused by the two independent deletions identified by CGH. The gene with the larges fold change was MGST1, which is associated with drug resistance and thus may be associated with dexamethasone resistance in this model system based on its expression profile. We analyzed our exome sequencing results for high-confidence (called by both SAMtools and GATK) non-synonymous mutations not present in the 1000 Genomes Project and filtered them for expression (FPKM > 5). We identified 218 mutations in MM.1R, 208 mutations which were also expressed in MM.1S and 10 mutations which were not expressed in MM.1S. The 10 genes with these mutations—PDIA5, TCERG1, RANBP9, MMS22L, PHF19, RNMTL1, AURKB, ERN1, GPCPD1, PIGT—present potential additional contributors to dexamethasone resistance. Specifically, for example, overexpression of RANBPM (the protein from RANBP9) results in increased glucocorticoid activity, suggesting that it may work in concert with NR3C1 to mediate the effects of dexamethasone. Ultimately, our results indicate that, unlike previous assumptions, there are several contributors to dexamethasone resistance in this model system and likely even more in the general patient populations, not just differential expression of NR3C1. Furthermore, we have discovered that this differential expression is due to biallelic inactivation of NR3C1 in MM.1R. Future studies will test the relative contribution of each factor to the differential sensitivity to dexamethasone observed in this model system and a broader understanding of this problem in multiple myeloma. Disclosures: No relevant conflicts of interest to declare.


mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Scott R. Waterman ◽  
Yoon-Dong Park ◽  
Meera Raja ◽  
Jin Qiu ◽  
Dima A. Hammoud ◽  
...  

ABSTRACTWhile research has identified an important contribution for metals, such as iron, in microbial pathogenesis, the roles of other transition metals, such as copper, remain mostly unknown. Recent evidence points to a requirement for copper homeostasis in the virulence ofCryptococcus neoformansbased on a role for aCUF1copper regulatory factor in mouse models and in a human patient cohort.C. neoformansis an important fungal pathogen that results in an estimated 600,000 AIDS-related deaths yearly. In the present studies, we found that aC. neoformansmutant lacking theCUF1-dependent copper transporter,CTR4, grows normally in rich medium at 37°C but has reduced survival in macrophages and attenuated virulence in a mouse model. This reduced survival and virulence were traced to a growth defect under nutrient-restricted conditions. Expression studies using a full-lengthCTR4-fluorescent fusion reporter construct demonstrated robust expression in macrophages, brain, and lung, the latter shown byex vivofluorescent imaging. Inductively coupled mass spectroscopy (ICP-MS) was used to probe the copper quota of fungal cells grown in defined medium and recovered from brain, which suggested a role for a copper-protective function ofCTR4in combination with cell metallothioneins under copper-replete conditions. In summary, these data suggest a role forCTR4in copper-related homeostasis and subsequently in fungal virulence.IMPORTANCECrytococcus neoformansis a significant global fungal pathogen, and copper homeostasis is a relatively unexplored aspect of microbial pathogenesis that could lead to novel therapeutics. Previous studies correlated expression levels of a Ctr4 copper transporter to development of meningoencephalitis in a patient cohort of solid-organ transplants, but a direct role for Ctr4 in mammalian pathogenesis has not been demonstrated. The present studies utilize a Δctr4mutant strain which revealed an important role forCTR4inC. neoformansinfections in mice and relate the gene product to homeostatic control of copper and growth under nutrient-restricted conditions. Robust expression levels ofCTR4during fungal infection were exploited to demonstrate expression and lung cryptococcal disease usingex vivofluorescence imaging. In summary, these studies are the first to directly demonstrate a role for a copper transporter in fungal disease and provide anex vivoimaging tool for further study of cryptococcal gene expression and pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document