Thermodynamic analysis of combined open-cycle-twin-shaft gas turbine (Brayton cycle) and exhaust gas operated absorption refrigeration unit

1998 ◽  
Vol 18 (9-10) ◽  
pp. 847-856 ◽  
Author(s):  
M. Mostafavi ◽  
A. Alaktiwi ◽  
B. Agnew
Author(s):  
Y. Tsujikawa ◽  
K. Kaneko ◽  
S. Fujii

In the course of the worldwide efforts to suppress the global warming, the saving energy becomes more important. Recently, the LNG (liquefied natural gas) terminals in our country have received more than 50 million tons of LNG per year. Therefore, the utilization of the cryogenic exergy in connection with the regasification of LNG gains more and more importance. The aim of this paper is the recovery of the energy consumed in liquefaction using the MGT (Mirror Gas Turbine), which is a kind of new combined cycle of a conventional gas turbine worked as a topping cycle and TG (inverted Brayton cycle) as a bottoming cycle. The optimum characteristics have been calculated and it is shown that this cycle is superior to the current-use gasification systems in employing seawater heats in terms of thermal efficiency and specific output. In the present cycle, the cold of LNG is used to cool the exhaust gas from a turbine of TG, and then the exergy of the liquefied natural gas is transformed to electric energy with a very high efficiency. The main feature of this new concept is the removal of an evaporation system using seawater.


2013 ◽  
Vol 34 (2) ◽  
pp. 23-38 ◽  
Author(s):  
Paweł Ziółkowski ◽  
Witold Zakrzewski ◽  
Oktawia Kaczmarczyk ◽  
Janusz Badur

Abstract In this paper, thermodynamic analysis of a proposed innovative double Brayton cycle with the use of oxy combustion and capture of CO2, is presented. For that purpose, the computation flow mechanics (CFM) approach has been developed. The double Brayton cycle (DBC) consists of primary Brayton and secondary inverse Brayton cycle. Inversion means that the role of the compressor and the gas turbine is changed and firstly we have expansion before compression. Additionally, the workingfluid in the DBC with the use of oxy combustion and CO2 capture contains a great amount of H2O and CO2, and the condensation process of steam (H2O) overlaps in negative pressure conditions. The analysis has been done for variants values of the compression ratio, which determines the lowest pressure in the double Brayton cycle.


Author(s):  
J. R. Khan ◽  
W. E. Lear ◽  
S. A. Sherif

A thermodynamic performance analysis is performed on a novel cooling and power cycle that combines a semi-closed cycle gas turbine called the High Pressure Regenerative Turbine Engine (HPRTE) with an absorption refrigeration unit. Waste heat from the recirculated combustion gas of the HPRTE is used to power the absorption refrigeration unit, which cools the high-pressure compressor inlet of the HPRTE to below ambient conditions and also produces excess refrigeration, in an amount which depends on ambient conditions. The cycle is modeled using traditional one-dimensional steady-state thermodynamics, with state-of-the-art polytropic efficiencies and pressure drops for the turbo-machinery and heat exchangers, and accurate y correlations for the properties of the LiBr-water mixture and the combustion products. Water produced as a product of combustion is intentionally condensed in the evaporator of the vapor absorption refrigeration system. The mixture properties of air account for the water removal rate. The vapor absorption refrigeration unit is designed to provide sufficient cooling for water extraction. The cycle is shown to operate with a thermal efficiency approaching 58% for a turbine inlet temperature of 1400 °C in addition to producing about 0.45 liters of water per liter of fuel consumed. Also at the above operating condition the ratio of the refrigeration effect to the net work output from the system is equal to 0.8. The ratio of mass of water extracted to the mass of fresh air inlet into the combined cycle is obtained for different values of cycle parameters, namely turbine inlet temperature, recuperator inlet temperature and the low pressure compressor ratio. The maximum value of this ratio is found to be around 0.11. It is found that it is a strong function of the recirculation ratio and it decreased by 22% as the recirculation ratio is decreased by 70%. The thermodynamic impacts of water extraction on the system performance are also discussed. Based on these results, and prior results, which showed that the HPRTE is very compact, it appears that this cycle would be ideally suited for distributed power and vehicle applications, especially ones with associated air conditioning loads.


Author(s):  
Sanchit Agarwal ◽  
Darshika Gupta ◽  
Devendra Dandotiya ◽  
Nitin D. Banker

Abstract In the step towards the utilization of waste energy of Gas Turbine (GT) power plant exhaust gas, researchers have imposed adsorption refrigeration system over the absorption refrigeration due to several positive advantages. In the reported work, the system was analyzed based on first law efficiency. However, combining heat and work together for an evaluating system using first law efficiency would not provide a true picture of the performance of the system, whereas second law efficiency shows various irreversibilities associated with each component of the system and helpful in obtaining the optimum conversion of energy. In view of this, the presented paper studies performance analysis of GT power plant incorporated with the adsorption refrigeration system. Based on the parameters such as energy and exergetic efficiencies, cooling to power ratio and exergetic specific fuel consumption are considered for the system performance evaluation.


2018 ◽  
Vol 25 (3) ◽  
pp. 94-103 ◽  
Author(s):  
N R Ammar ◽  
I S Sediek

Abstract Marine diesel engines lose a huge amount of fuel heat content in the form of exhaust gas and jacket cooling water, especially onboard high-powered marine vehicles such as Ro-Pax ships. In this paper, the possibility of using the waste heat of marine diesel engines as a source of heat for air conditioning absorption system is investigated. The thermodynamic analysis, in addition to the environmental and economic analysis of the air condition absorption cycle operated with two heat sources using lithium bromide as absorbent, are performed using the Engineering Equation Solver (EES) software. The last 10 years have seen a steady growth in the passenger ferry and Ro-Pax market, with particularly strong growth in passenger numbers. As a case study, a Ro-Pax vessel operating in the Red Sea area is considered, regarding the profitability of using air conditioning absorption system. The results show specific economic benefits of the jacket cooling water operated absorption refrigeration unit (ARU) over the exhaust gas operated unit, with annual costs of capital money recovery of 51,870 $/year and 54,836 $/year, respectively. Environmentally, applying an ARU machine during cruising will reduce fuel consumption by 104 ton/year. This, in turn, will result in reducing NOx, SOx, and CO2 emissions with cost-effectiveness of 7.73 $/kg, 20.39 $/kg, and 0.13 $/kg, respectively.


Sign in / Sign up

Export Citation Format

Share Document