Mode I fracture analysis of the double edge cracked Brazilian disk using a weight function method

Author(s):  
F Chen ◽  
Z Sun ◽  
J Xu
1999 ◽  
Vol 121 (2) ◽  
pp. 181-187 ◽  
Author(s):  
C.-C. Ma ◽  
I-K. Shen

In this study, mode I stress intensity factors for a three-dimensional finite cracked body with arbitrary shape and subjected to arbitrary loading is presented by using the boundary weight function method. The weight function is a universal function for a given cracked body and can be obtained from any arbitrary loading system. A numerical finite element method for the determination of weight function relevant to cracked bodies with finite dimensions is used. Explicit boundary weight functions are successfully demonstrated by using the least-squares fitting procedure for elliptical quarter-corner crack and embedded elliptical crack in parallelepipedic finite bodies. If the stress distribution of a cut-out parallelepipedic cracked body from any arbitrary shape of cracked body subjected to arbitrary loading is determined, the mode I stress intensity factors for the cracked body can be obtained from the predetermined boundary weight functions by a simple surface integration. Comparison of the calculated results with some available solutions in the published literature confirms the efficiency and accuracy of the proposed boundary weight function method.


2018 ◽  
Vol 53 (4) ◽  
pp. 197-209 ◽  
Author(s):  
Xiao-Wei Wang ◽  
De-Guang Shang ◽  
Yu-Juan Sun

A weight function method based on strain parameters is proposed to determine the critical plane in low-cycle fatigue region under both constant and variable amplitude tension–torsion loadings. The critical plane is defined by the weighted mean maximum absolute shear strain plane. Combined with the critical plane determined by the proposed method, strain-based fatigue life prediction models and Wang-Brown’s multiaxial cycle counting method are employed to predict the fatigue life. The experimental critical plane orientation and fatigue life data under constant and variable amplitude tension–torsion loadings are used to verify the proposed method. The results show that the proposed method is appropriate to determine the critical plane under both constant and variable amplitude loadings.


Author(s):  
Rui Sun ◽  
Zongwen An ◽  
Hong-Zhong Huang ◽  
Qiming Ma

Propagation of a critical unstable crack under the action of static or varying stresses is determined by the intensity of strain field at tips of the crack. Stress intensity factor (SIF) is an important parameter in fracture mechanics, which is used as a criterion to judge the unstable propagation of a crack and plays an important role in calculating crack propagation life. SIF is related to both geometrical form and loading condition of a structure. In the paper, a weight function method is introduced to study crack propagation of center through cracks and edge cracks in a finite-size plate. In addition, finite element method, linear regression, and polynomial interpolating technique are used to simulate and verify the proposed method. Comparison studies among the proposed and current methods are performed as well. The results show that the weight function method can be used to calculate SIF easily.


Sign in / Sign up

Export Citation Format

Share Document