Modeling of Activated Sludge Wastewater Treatment Processes Using Integrated Neural Networks and a First Principle Model

1996 ◽  
Vol 29 (1) ◽  
pp. 6774-6779 ◽  
Author(s):  
Hong Zhao ◽  
Thomas J. McAvoy
2020 ◽  
Vol 53 (5) ◽  
pp. 671-679
Author(s):  
Abdallah Lemita ◽  
Sebti Boulahbel ◽  
Sami Kahla ◽  
Moussa Sedraoui

Dissolved oxygen (DO) concentration is a key variable in the activated sludge wastewater treatment processes. In this paper, an auto control strategy based on Euler method and gradient method with radial basis function (RBF) neural networks (NNs) is proposed to solve the DO concentration control problem in an activated sludge process of wastewater treatment. The control purpose is to maintain the dissolved oxygen concentration in the aerated tank for having the substrate concentration within the standard limits established by legislation of wastewater treatment. For that reason, a new proposed control strategy based on gradient descent method and RBF neural network has been used. Compared with RBF neural network PI control, the obtained results show the effectiveness in terms of both transient and steady performances of proposed control method for dissolved oxygen control in the activated sludge wastewater treatment processes.


1998 ◽  
Vol 37 (12) ◽  
pp. 77-85 ◽  
Author(s):  
T. Ohtsuki ◽  
T. Kawazoe ◽  
T. Masui

An intelligent control system for wastewater treatment processes has been developed and applied to fullscale, high-rate, activated sludge process control. In this control system, multiple software agents that model the target system using their own modeling method collaborate by using data stored in an abstracted database named ‘blackboard’. The software agents, which are called ‘expert modules’, include a fuzzy expert system, a fuzzy controller, a theoretical activated sludge model, and evaluators of raw data acquired by various online sensors including a respirometer. In this paper, the difficulties of controlling an activated sludge system by using a single conventional strategy are briefly reviewed, then our approach to overcome these difficulties by using multiple modeling methods in the framework of an ‘intelligent control system’ is proposed. Case studies of applications to a high-rate activated sludge process that treats BOD and nitrogen of human excrement are also presented.


2020 ◽  
Vol 12 (11) ◽  
pp. 4758
Author(s):  
Huyen T.T. Dang ◽  
Cuong V. Dinh ◽  
Khai M. Nguyen ◽  
Nga T.H. Tran ◽  
Thuy T. Pham ◽  
...  

Fixed-film biofilm reactors are considered one of the most effective wastewater treatment processes, however, the cost of their plastic bio-carriers makes them less attractive for application in developing countries. This study evaluated loofah sponges, an eco-friendly renewable agricultural product, as bio-carriers in a pilot-scale integrated fixed-film activated sludge (IFAS) system for the treatment of municipal wastewater. Tests showed that pristine loofah sponges disintegrated within two weeks resulting in a decrease in the treatment efficiencies. Accordingly, loofah sponges were modified by coating them with CaCO3 and polymer. IFAS pilot tests using the modified loofah sponges achieved 83% organic removal and 71% total nitrogen removal and met Vietnam’s wastewater effluent discharge standards. The system achieved considerably high levels of nitrification and it was not limited by the loading rate or dissolved oxygen levels. Cell concentrations in the carriers were twenty to forty times higher than those within the aeration tank. Through 16S-rRNA sequencing, the major micro-organism types identified were Kluyvera cryocrescens, Exiguobacterium indicum, Bacillus tropicus, Aeromonas hydrophila, Enterobacter cloacae, and Pseudomonas turukhanskensis. This study demonstrated that although modified loofah sponges are effective renewable bio-carriers for municipal wastewater treatment, longer-term testing is recommended.


2003 ◽  
Vol 47 (9) ◽  
pp. 45-49 ◽  
Author(s):  
M. Suwa ◽  
Y. Suzuki

The outbreak of Cryptosporidiosis in 1996 in Japan is thought to have been enlarged by the proliferation of Cryptosporidium in the water cycle from wastewater to drinking water through the river system. From this experience, the wastewater system must have functions to remove Cryptosporidium oocysts effectively. Efficiencies of wastewater treatment processes to remove oocysts were investigated using pilot plants receiving municipal wastewater. An activated sludge process and a following sand filter showed removal efficiencies of 2 log and 0.5 log, respectively. Poly-aluminium chloride dosage improved the efficiencies by 3 log for the activated sludge process and by 2 log for the sand filter. Chemical precipitation of raw wastewater with poly-aluminium chloride could achieve 1 to 3 log removal according on the coagulant concentration.


2001 ◽  
Vol 44 (1) ◽  
pp. 49-56 ◽  
Author(s):  
M. Wichern ◽  
F. Obenaus ◽  
P. Wulf ◽  
K.-H. Rosenwinkel

In 1999 the Activated Sludge Model no. 3 (ASM 3) by the IWA task Group on Mathematical Modeling for Design and Operation of Biological Wastewater Treatment was presented. The model is used for simulation of nitrogen removal. On the basis of a new calibration of the ASM 3 with the easy degradable COD measured by respiration simulation runs of this paper have been done. In 2000 a biological phosphorus removal module by the EAWAG was added to the calibrated version of ASM 3 and is now serving the current requirements for modelling the enhanced biological P-removal. Only little experiences with different load situations of large-scale wastewater treatment plants were made with both new models so far. This article reports the experiences with the simulation and calibration of the biological parameters using ASM 3 and the EAWAG BioP Module. Three different large-scale wastewater treatment plants in Germany with different treatment systems will be discussed (Koblenz: pre-denitrification; Hildesheim: simultaneous denitrification with EBPR; Duderstadt: intermediate denitrification with EBPR). Informations regarding the choice of kinetic and stoichiometric parameters will be given.


Sign in / Sign up

Export Citation Format

Share Document