13 Cellular and molecular mechanisms of photobiomodulation via activation of mitochondrial respiratory chain

2012 ◽  
Vol 9 ◽  
pp. S4-S5
Author(s):  
T.I. Karu
2021 ◽  
Author(s):  
Caroline Trumpff ◽  
Edward Owusu-Ansah ◽  
Hans-Ulrich Klein ◽  
Annie Lee ◽  
Vladislav Petyuk ◽  
...  

Mitochondrial respiratory chain (RC) function requires the stochiometric interaction among dozens of proteins but their co-regulation has not been defined in the human brain. Here, using quantitative proteomics across three independent cohorts we systematically characterized the co-regulation patterns of mitochondrial RC proteins in the human dorsolateral prefrontal cortex (DLPFC). Whereas the abundance of RC protein subunits that physically assemble into stable complexes were correlated, indicating their co-regulation, RC assembly factors exhibited modest co-regulation. Within complex I, nuclear DNA-encoded subunits exhibited >2.5-times higher co-regulation than mitochondrial (mt)DNA-encoded subunits. Moreover, mtDNA copy number was unrelated to mtDNA-encoded subunits abundance, suggesting that mtDNA content is not limiting. Alzheimer disease (AD) brains exhibited reduced abundance of complex I RC subunits, an effect largely driven by a 2-4% overall lower mitochondrial protein content. These findings provide foundational knowledge to identify molecular mechanisms contributing to age- and disease-related erosion of mitochondrial function in the human brain.


2019 ◽  
Author(s):  
Luke W. Thomas ◽  
Jenna M. Stephen ◽  
Cinzia Esposito ◽  
Simon Hoer ◽  
Robin Antrobus ◽  
...  

ABSTRACTBACKGROUNDTumour cells rely on glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) to survive. Thus mitochondrial OXPHOS has become an increasingly attractive area for therapeutic exploitation in cancer. However, mitochondria are required for intracellular oxygenation and normal physiological processes, and it remains unclear which mitochondrial molecular mechanisms might provide therapeutic benefit. Previously, we discovered that coiled-coil helix coiled-coil helix domain-containing protein 4 (CHCHD4) is critical for maintaining intracellular oxygenation and required for the cellular response to hypoxia (low oxygenation) in tumour cells through molecular mechanisms that we do not yet fully understand. Overexpression of CHCHD4 in human cancers, correlates with increased tumour progression and poor patient survival.RESULTSHere, we show that elevated CHCHD4 expression provides a proliferative and metabolic advantage to tumour cells in normoxia and hypoxia. Using stable isotope labelling with amino acids in cell culture (SILAC) and analysis of the whole mitochondrial proteome, we show that CHCHD4 dynamically affects the expression of a broad range of mitochondrial respiratory chain subunits from complex I-V, including multiple subunits of complex I (CI) required for complex assembly that are essential for cell survival. We found that loss of CHCHD4 protects tumour cells from respiratory chain inhibition at CI, while elevated CHCHD4 expression in tumour cells leads to significantly increased sensitivity to CI inhibition, in part through the production of mitochondrial reactive oxygen species (ROS).CONCLUSIONSOur study highlights an important role for CHCHD4 in regulating tumour cell metabolism, and reveals that CHCHD4 confers metabolic vulnerabilities to tumour cells through its control of the mitochondrial respiratory chain and CI biology.


Sign in / Sign up

Export Citation Format

Share Document