scholarly journals Physiological response of flag leaf and yield formation of winter wheat under different spring restrictive irrigation regimes in the Haihe Plain, China

2021 ◽  
Vol 20 (9) ◽  
pp. 2343-2359
Author(s):  
Xue-jing LIU ◽  
Bao-zhong YIN ◽  
Zhao-hui HU ◽  
Xiao-yuan BAO ◽  
Yan-dong WANG ◽  
...  
2012 ◽  
Vol 19 (5) ◽  
pp. 1091-1095
Author(s):  
Chang-Hai SHI ◽  
Shao-Hua KONG ◽  
Hong-Mei ZHAI ◽  
Jing YANG ◽  
Dong-Xiao LI ◽  
...  

2018 ◽  
pp. 32-34 ◽  
Author(s):  
S. N. Gromova ◽  
P. I. Kostylev

The article presents the results of the conducted analysis of research works about the effect of size of flag leaves and awns on winter wheat productivity. The genetic potential of the variety, which can be realized on the basis of its biologic characteristics largely influences on its productivity. Productivity is a complex trait that is controlled by a complex genetic system closely connected with many factors of environment. The size and duration of assimilation surface are the most important components of biologic and agricultural yield of wheat. Many researchers showed that the amount and duration of photosynthesis by leaf surface are the main factors limiting productivity in the definite conditions of growing, and the size of leaf surface correlates with grain productivity. Photosynthetic parts of winter wheat include not only leaves, but also stems, heads, awns, etc. The conducted analysis of the literature showed that there is no consensus on the effect of flag leaves on wheat yield formation. Therefore it’s necessary to fulfill the study and evaluation of the part of flag leaves and awns in the formation of winter soft wheat productivity in the Rostov region.


2021 ◽  
Vol 32 ◽  
pp. 02012
Author(s):  
Aleksey Suslov ◽  
Dimitry Sviridenk ◽  
Vasiliy Mamayev ◽  
Irina Sychiova

It has been shown that pre-sowing treatment increases field germination by 5.5%, and the preservation of plants after overwintering increases by 4.3%. Gumiton strengthened the work of the assimilation apparatus of the flag leaf due to an increase in leaf area by 29.3-49.1% and extended the life of plants. As a part of a tank mixture (Tabu Super, 1.5 l / t + Tertia, 2.5 l t), the drug allowed to reduce the prevalence of the root rot disease to 2.45-1.05% in comparison with the control. The organomineral complex provided the formation of a larger and more leveled grain with a mass of 1000 grains of 47.0-47.5 g, 43.9 g in the control; the grain nature is more than 780 g / dm 3, 751.7 g / dm 3, in the control. The use of Gumiton (seeds + tillering + piping) against the background of N 96 P 96 K 96 provided a high yield increase by 37.8%. To reduce the expenses of foliar fertilization with nitrogen fertilizers, the Gumiton organic-mineral complex should be recommended, since it is an element of greening in intensive technologies of winter wheat cultivation.


2008 ◽  
Vol 8 (1) ◽  
pp. 74-77
Author(s):  
H. Dehghanzad ◽  
M.R. Khajeh poo ◽  
H.H. Sharif Aba ◽  
A. Soleimani ◽  
H. Samieinia ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1825
Author(s):  
Moussa El Jarroudi ◽  
Louis Kouadio ◽  
Jürgen Junk ◽  
Clive H. Bock

The choice of the phyllotherm value for predicting leaf emergence under field conditions is pivotal to the success of fungicide-based disease risk management in temperate cereals. In this study, we investigated phyllotherm variability for predicting the emergence of the three uppermost leaves (i.e., three last leaves to emerge) in winter wheat and winter barley fields. Data from four sites representative of wheat and barley growing regions in Luxembourg were used within the PROCULTURE model to predict the emergence of F-2, F-1 and F (F being the flag leaf) during the 2014–2019 cropping seasons. The phyllotherms tested ranged between 100 °Cd and 160 °Cd, in 15 °Cd steps, including the current default value of 130 °Cd. The comparisons between the observed and predicted emerged leaf area were qualitatively evaluated using the mean absolute error (MAE), the root mean square error (RMSE) and Willmott’s index (WI). A phyllotherm of 100 °Cd accurately and reliably predicted the emergence of all three upper leaves under the various environmental conditions and crop cultivars of winter wheat and winter barley over the study period. MAE and RMSE were generally <5% and the WI values were most often ≥0.90 for F-1 and F. For phyllotherm values ≥115 °Cd, the prediction errors generally increased for F-1 and F, with MAE and RMSE exceeding 20% in most cases. F-2 agreement between observed and predicted values was generally similar when using 100 °Cd or 115 °Cd. These results tie in valuable, complementary information regarding the variability of phyllotherms within leaf layers in winter wheat and winter barley in Luxembourg. Accurate and reliable leaf emergence prediction from F-2 to F allows for timely fungicide application, which ensures lasting protection against infections by foliar fungal disease pathogens. Hence, understanding phyllotherms can help ensure timely, environmentally sound, and efficacious fungicide application while increasing the likelihood of improved yields of winter wheat and winter barley.


Sign in / Sign up

Export Citation Format

Share Document