Energy Materials: Ionic Conductors, Mixed Conductors, and Intercalation Chemistry

2021 ◽  
pp. 529-578
Author(s):  
R. B. Queenan ◽  
P. K. Davies

Na ß“-alumina (Na1.67Mg67Al10.33O17) is a non-stoichiometric sodium aluminate which exhibits fast ionic conduction of the Na+ ions in two dimensions. The Na+ ions can be exchanged with a variety of mono-, di-, and trivalent cations. The resulting exchanged materials also show high ionic conductivities.Considerable interest in the Na+-Nd3+-ß“-aluminas has been generated as a result of the recent observation of lasing in the pulsed and cw modes. A recent TEM investigation on a 100% exchanged Nd ß“-alumina sample found evidence for the intergrowth of two different structure types. Microdiffraction revealed an ordered phase coexisting with an apparently disordered phase, in which the cations are completely randomized in two dimensions. If an order-disorder transition is present then the cooling rates would be expected to affect the microstructures of these materials which may in turn affect the optical properties. The purpose of this work was to investigate the affect of thermal treatments upon the micro-structural and optical properties of these materials.


2019 ◽  
Vol 10 (12) ◽  
pp. 1165-1171
Author(s):  
Karl Gatterer ◽  
◽  
Salah Arafa ◽  

Reliable and affordable energy is the key for the socio-economic development in rural and desert communities worldwide. While energy can be used for consumption purposes such as Lighting, Access to Information, Comfort and Entertainment, productive use of renewable energy is the key enabler for SMEs and Economy to grow. The paper examines the complex interactions among Energy, Materials, Water, Food, Building, Employment and Environment. It also discusses the implementation of renewable energy technologies to overcome some of barriers faced by rural villages and desert communities. It shows some of the special applications and approaches used over the past few decades in energy conversion, consumption and conservation to achieve poverty reduction, social justice and sustainable development. Field experiences in Basaisa projects, Egypt showed that open free dialogues with all stakeholders, site-specific education and training, appropriate local financing systems and access to knowledge are key-elements and essential factors for achieving green economy and sustainable community development. The coming decade will see a continued expansion of knowledge about renewable energy resources and its useful applications as systems friendly to the environment and as tools for economic activities, sustainable living and growth in rural and desert communities.


2000 ◽  
Vol 628 ◽  
Author(s):  
G. González ◽  
P. J. Retuert ◽  
S. Fuentes

ABSTRACTBlending the biopolymer chitosan (CHI) with poly (aminopropilsiloxane) oligomers (pAPS), and poly (ethylene oxide) (PEO) in the presence of lithium perchlorate lead to ion conducting products whose conductivity depends on the composition of the mixture. A ternary phase diagram for mixtures containing 0.2 M LiClO4 shows a zone in which the physical properties of the products - transparent, flexible, mechanically robust films - indicate a high degree of molecular compatibilization of the components. Comparison of these films with binary CHI-pAPS nanocomposites as well as the microscopic aspect, thermal behavior, and X-ray diffraction pattern of the product with the composition PEO/CHI/pAPS/LiClO4 1:0.5:0.6:0.2 molar ratio indicates that these films may be described as a layered nanocomposite. In this composite, lithium species coordinated by PEO and pAPS should be inserted into chitosan layers. Electrochemical impedance spectroscopy measurements indicate the films are pure ionic conductors with a maximal bulk conductivity of 1.7*10-5 Scm-1 at 40 °C and a sample-electrode interface capacitance of about 1.2*10-9 F.


2020 ◽  
Author(s):  
Saneyuki Ohno ◽  
Tim Bernges ◽  
Johannes Buchheim ◽  
Marc Duchardt ◽  
Anna-Katharina Hatz ◽  
...  

<p>Owing to highly conductive solid ionic conductors, all-solid-state batteries attract significant attention as promising next-generation energy storage devices. A lot of research is invested in the search and optimization of solid electrolytes with higher ionic conductivity. However, a systematic study of an <i>interlaboratory reproducibility</i> of measured ionic conductivities and activation energies is missing, making the comparison of absolute values in literature challenging. In this study, we perform an uncertainty evaluation via a Round Robin approach using different Li-argyrodites exhibiting orders of magnitude different ionic conductivities as reference materials. Identical samples are distributed to different research laboratories and the conductivities and activation barriers are measured by impedance spectroscopy. The results show large ranges of up to 4.5 mScm<sup>-1</sup> in the measured total ionic conductivity (1.3 – 5.8 mScm<sup>-1</sup> for the highest conducting sample, relative standard deviation 35 – 50% across all samples) and up to 128 meV for the activation barriers (198 – 326 meV, relative standard deviation 5 – 15%, across all samples), presenting the necessity of a more rigorous methodology including further collaborations within the community and multiplicate measurements.</p>


Sign in / Sign up

Export Citation Format

Share Document