The influence of the inertially dominated outer region on the rheology of a dilute dispersion of low-Reynolds-number drops or rigid particles

2011 ◽  
Vol 674 ◽  
pp. 307-358 ◽  
Author(s):  
GANESH SUBRAMANIAN ◽  
DONALD L. KOCH ◽  
JINGSHENG ZHANG ◽  
CHAO YANG

We calculate the rheological properties of a dilute emulsion of neutrally buoyant nearly spherical drops at O(φRe3/2) in a simple shear flow(u∞ = x211, being the shear rate) as a function of the ratio of the dispersed- and continuous-phase viscosities (λ = /μ). Here, φ is the volume fraction of the dispersed phase and Re is the micro-scale Reynolds number. The latter parameter is a dimensionless measure of inertial effects on the scale of the dispersed-phase constituents and is defined as Re = a2ρ/μ, a being the drop radius and ρ the common density of the two phases. The analysis is restricted to the limit φ, Re ≪ 1, when hydrodynamic interactions between drops may be neglected, and the velocity field in a region around the drop of the order of its own size is governed by the Stokes equations at leading order. The dominant contribution to the rheology at O(φRe3/2), however, arises from the so-called outer region where the leading-order Stokes approximation ceases to be valid. The relevant length scale in this outer region, the inertial screening length, results from a balance of convection and viscous diffusion, and is O(aRe−1/2) for simple shear flow in the limit Re ≪ 1. The neutrally buoyant drop appears as a point-force dipole on this scale. The rheological calculation at O(φRe3/2) is therefore based on a solution of the linearized Navier–Stokes equations forced by a point dipole. The principal contributions to the bulk rheological properties at this order arise from inertial corrections to the drop stresslet and Reynolds stress integrals. The theoretical calculations for the stresslet components are validated via finite volume simulations of a spherical drop at finite Re; the latter extend up to Re ≈ 10.Combining the results of our O(φRe3/2) analysis with the known rheology of a dilute emulsion to O(φRe) leads to the following expressions for the relative viscosity (μe), and the non-dimensional first (N1) and second normal stress differences (N2) to O(φRe3/2): μe = 1 + φ[(5λ+2)/(2(λ+1))+0.024Re3/2(5λ+2)2/(λ+1)2]; N1=φ[−Re4(3λ2+3λ+1)/(9(λ+1)2)+0.066Re3/2(5λ+2)2/(λ+1)2] and N2 = φ[Re2(105λ2+96λ+35)/(315(λ+1)2)−0.085Re3/2(5λ+2)2/(λ+1)2].Thus, for small but finite Re, inertia endows an emulsion with a non-Newtonian rheology even in the infinitely dilute limit, and in particular, our calculations show that, aside from normal stress differences, such an emulsion also exhibits a shear-thickening behaviour. The results for a suspension of rigid spherical particles are obtained in the limit λ → ∞.

AIChE Journal ◽  
2018 ◽  
Vol 64 (7) ◽  
pp. 2816-2827 ◽  
Author(s):  
Bing Yuan ◽  
Chao Yang ◽  
Zai‐Sha Mao ◽  
Xiaolong Yin ◽  
Donald L. Koch

2010 ◽  
Vol 646 ◽  
pp. 255-296 ◽  
Author(s):  
R. VIVEK RAJA ◽  
GANESH SUBRAMANIAN ◽  
DONALD L. KOCH

The behaviour of an isolated nearly spherical drop in an ambient linear flow is examined analytically at small but finite Reynolds numbers, and thereby the first effects of inertia on the bulk stress in a dilute emulsion of neutrally buoyant drops are calculated. The Reynolds numbers, Re = a2ρ/μ and $\hat{\Rey} \,{=}\, \dot{\gamma}a^2\rho/\hat{\mu}$, are the relevant dimensionless measures of inertia in the continuous and disperse(drop) phases, respectively. Here, a is the drop radius, is the shear rate, ρ is the common density and and μ are, respectively, the viscosities of the drop and the suspending fluid. The assumption of nearly spherical drops implies the dominance of surface tension, and the analysis therefore corresponds to the limit of the capillary number(Ca) based on the viscosity of the suspending fluid being small but finite; in other words, Ca ≪ 1, where Ca = μa/T, T being the coefficient of interfacial tension. The bulk stress is determined to O(φRe) via two approaches. The first one is the familiar direct approach based on determining the force density associated with the disturbance velocity field on the surface of the drop; the latter is determined to O(Re) from a regular perturbation analysis. The second approach is based on a novel reciprocal theorem formulation and allows the calculation, to O(Re), of the drop stresslet, and hence the emulsion bulk stress, with knowledge of only the leading-order Stokes fields. The first approach is used to determine the bulk stress for linear flows without vortex stretching, while the reciprocal theorem approach allows one to generalize this result to any linear flow. For the case of simple shear flow, the inertial contributions to the bulk stress lead to normal stress differences(N1, N2) at O(φRe), where φ(≪1) is the volume fraction of the disperse phase. Inertia leads to negative and positive contributions, respectively, to N1 and N2 at O(φRe). The signs of the inertial contributions to the normal stress differences may be related to the O(ReCa) tilting of the drop towards the velocity gradient direction. These signs are, however, opposite to that of the normal stress differences in the creeping flow limit. The latter are O(φCa) and result from an O(Ca2) deformation of the drop acting to tilt it towards the flow axis. As a result, even a modest amount of inertia has a significant effect on the rheology of a dilute emulsion. In particular, both normal stress differences reverse sign at critical Reynolds numbers(Rec) of O(Ca) in the limit Ca ≪ 1. This criterion for the reversal in the signs of N1 and N2 is more conveniently expressed in terms of a critical Ohnesorge number(Oh) based on the viscosity of the suspending fluid, where Oh = μ/(ρaT)1/2. The critical Ohnesorge number for a sign reversal in N1 is found to be lower than that for N2, and the precise numerical value is a function of λ. In uniaxial extensional flow, the Trouton viscosity remains unaltered at O(φRe), the first effects of inertia now being restricted to O(φRe3/2). The analytical results for simple shear flow compare favourably with the recent numerical simulations of Li & Sarkar (J. Rheol., vol. 49, 2005, p. 1377).


1995 ◽  
Vol 283 ◽  
pp. 273-285 ◽  
Author(s):  
H. Nirschl ◽  
H. A. Dwyer ◽  
V. Denk

Three-dimensional solutions have been obtained for the steady simple shear flow over a spherical particle in the intermediate Reynolds number range 0.1 [les ] Re [les ] 100. The shear flow was generated by two walls which move at the same speed but in opposite directions, and the particle was located in the middle of the gap between the walls. The particle-wall interaction is treated by introducing a fully three-dimensional Chimera or overset grid scheme. The Chimera grid scheme allows each component of a flow to be accurately and efficiently treated. For low Reynolds numbers and without any wall influence we have verified the solution of Taylor (1932) for the shear around a rigid sphere. With increasing Reynolds numbers the angular velocity for zero moment for the sphere decreases with increasing Reynolds number. The influence of the wall has been quantified with the global particle surface characteristics such as net torque and Nusselt number. A detailed analysis of the influence of the wall distance and Reynolds number on the surface distributions of pressure, shear stress and heat transfer has also been carried out.


2014 ◽  
Vol 749 ◽  
pp. 431-459 ◽  
Author(s):  
Hamed Haddadi ◽  
Jeffrey F. Morris

AbstractThe microstructure and rheological properties of suspensions of neutrally buoyant hard spherical particles in Newtonian fluid under finite inertia conditions are studied using the lattice-Boltzmann method (LBM), which is based on a discrete Boltzmann model for the fluid and Newtonian dynamics for the particles. The suspensions are subjected to simple-shear flow and the properties are studied as a function of Reynolds number and volume fraction, $\phi $. The inertia is characterized by the particle-scale shear flow Reynolds number $\mathit{Re}= {(\rho \dot{\gamma }a^{2})/\mu }$, where $a$ is the particle radius, $\dot{\gamma }$ is the shear rate and $\rho $ and $\mu $ are the density and viscosity of the fluid, respectively. The influences of inertia and of the volume fraction are investigated for $0.005\leqslant \mathit{Re}\leqslant 5$ and$0.1\leqslant \phi \leqslant 0.35$. The flow-induced microstructure is studied using the pair distribution function $g(\boldsymbol {r})$. Different stress mechanisms, including those due to surface tractions (stresslet), acceleration and the Reynolds stress due to velocity fluctuations are computed and their influence on the first and second normal stress differences, the particle pressure and the viscosity of the suspensions are detailed. The probability density functions (PDFs) of linear and angular accelerations are also presented.


2008 ◽  
Vol 596 ◽  
pp. 413-435 ◽  
Author(s):  
PANDURANG M. KULKARNI ◽  
JEFFREY F. MORRIS

The pair trajectories of neutrally buoyant rigid spheres immersed in finite-inertia simple-shear flow are described. The trajectories are obtained using the lattice-Boltzmann method to solve the fluid motion, with Newtonian dynamics describing the sphere motions. The inertia is characterized by the shear-flow Reynolds number ${\it Re} \,{=}\,\rho\dot{\gamma}a^2/\mu$, where μ and ρ are the viscosity and density of the fluid respectively, $\dot{\gamma}$ is the shear rate and a is the radius of the larger of the pair of spheres in the case of unequal sizes; the majority of results presented are for pairs of equal radii. Reynolds numbers of 0 ≤ Re ≤ 1 are considered with a focus on inertia at Re = O(0.1). At finite inertia, the topology of the pair trajectories is altered from that predicted at Re = 0, as closed trajectories found in Stokes flow vanish and two new forms of trajectories are observed. These include spiralling and reversing trajectories in addition to largely undisturbed open trajectories. For Re = O(0.1), the limits of the various regions in pair space yielding open, reversing and spiralling trajectories are roughly defined.


AIChE Journal ◽  
2010 ◽  
Vol 57 (6) ◽  
pp. 1419-1433 ◽  
Author(s):  
Chao Yang ◽  
Jingsheng Zhang ◽  
Donald L. Koch ◽  
Xiaolong Yin

Sign in / Sign up

Export Citation Format

Share Document