Turbophoresis attenuation in a turbulent channel flow with polymer additives

2013 ◽  
Vol 732 ◽  
pp. 706-719 ◽  
Author(s):  
Arash Nowbahar ◽  
Gaetano Sardina ◽  
Francesco Picano ◽  
Luca Brandt

AbstractTurbophoresis occurs in wall-bounded turbulent flows where it induces a preferential accumulation of inertial particles towards the wall and is related to the spatial gradients of the turbulent velocity fluctuations. In this work, we address the effects of drag-reducing polymer additives on turbophoresis in a channel flow. The analysis is based on data from a direct numerical simulation of the turbulent flow of a viscoelastic fluid modelled with the FENE-P closure and laden with particles of different inertia. We show that polymer additives decrease the particle preferential wall accumulation and demonstrate with an analytical model that the turbophoretic drift is reduced because the wall-normal variation of the wall-normal fluid velocity fluctuations decreases. As this is a typical feature of drag reduction in turbulent flows, an attenuation of turbophoresis and a corresponding increase in the particle streamwise flux are expected to be observed in all of these flows, e.g. fibre or bubble suspensions and magnetohydrodynamics.

2015 ◽  
Vol 774 ◽  
pp. 395-415 ◽  
Author(s):  
Myoungkyu Lee ◽  
Robert D. Moser

A direct numerical simulation of incompressible channel flow at a friction Reynolds number ($\mathit{Re}_{{\it\tau}}$) of 5186 has been performed, and the flow exhibits a number of the characteristics of high-Reynolds-number wall-bounded turbulent flows. For example, a region where the mean velocity has a logarithmic variation is observed, with von Kármán constant ${\it\kappa}=0.384\pm 0.004$. There is also a logarithmic dependence of the variance of the spanwise velocity component, though not the streamwise component. A distinct separation of scales exists between the large outer-layer structures and small inner-layer structures. At intermediate distances from the wall, the one-dimensional spectrum of the streamwise velocity fluctuation in both the streamwise and spanwise directions exhibits $k^{-1}$ dependence over a short range in wavenumber $(k)$. Further, consistent with previous experimental observations, when these spectra are multiplied by $k$ (premultiplied spectra), they have a bimodal structure with local peaks located at wavenumbers on either side of the $k^{-1}$ range.


2001 ◽  
Vol 27 (4) ◽  
pp. 701-719 ◽  
Author(s):  
Koji Fukagata ◽  
Said Zahrai ◽  
Shunsuke Kondo ◽  
Fritz H. Bark

2019 ◽  
Vol 872 ◽  
pp. 367-406 ◽  
Author(s):  
Kee Onn Fong ◽  
Omid Amili ◽  
Filippo Coletti

We present experimental observations of the velocity and spatial distribution of inertial particles dispersed in turbulent downward flow through a vertical channel at friction Reynolds numbers $\mathit{Re}_{\unicode[STIX]{x1D70F}}=235$ and 335. The working fluid is air laden with size-selected glass microspheres, having Stokes numbers $St=\mathit{O}(10)$ and $\mathit{O}(100)$ when based on the Kolmogorov and viscous time scales, respectively. Cases at solid volume fractions $\unicode[STIX]{x1D719}_{v}=3\times 10^{-6}$ and $5\times 10^{-5}$ are considered. In the more dilute regime, the particle concentration profile shows near-wall and centreline maxima compatible with a turbophoretic drift down the gradient of turbulence intensity; the particles travel at speed similar to that of the unladen flow except in the near-wall region; and their velocity fluctuations generally follow the unladen flow level over the channel core, exceeding it in the near-wall region. The denser regime presents substantial differences in all measured statistics: the near-wall concentration peak is much more pronounced, while the centreline maximum is absent; the mean particle velocity decreases over the logarithmic and buffer layers; and particle velocity fluctuations and deposition velocities are enhanced. An analysis of the spatial distributions of particle positions and velocities reveals different behaviours in the core and near-wall regions. In the channel core, dense clusters form which are somewhat elongated, tend to be preferentially aligned with the vertical/streamwise direction and travel faster than the less concentrated particles. In the near-wall region, the particles arrange in highly elongated streaks associated with negative streamwise velocity fluctuations, several channel heights in length and spaced by $\mathit{O}(100)$ wall units, supporting the view that these are coupled to fluid low-speed streaks typical of wall turbulence. The particle velocity fields contain a significant component of random uncorrelated motion, more prominent for higher $St$ and in the near-wall region.


2019 ◽  
Vol 863 ◽  
pp. 1190-1203 ◽  
Author(s):  
Sabarish B. Vadarevu ◽  
Sean Symon ◽  
Simon J. Illingworth ◽  
Ivan Marusic

We study the evolution of velocity fluctuations due to an isolated spatio-temporal impulse using the linearized Navier–Stokes equations. The impulse is introduced as an external body force in incompressible channel flow at $Re_{\unicode[STIX]{x1D70F}}=10\,000$. Velocity fluctuations are defined about the turbulent mean velocity profile. A turbulent eddy viscosity is added to the equations to fix the mean velocity as an exact solution, which also serves to model the dissipative effects of the background turbulence on large-scale fluctuations. An impulsive body force produces flow fields that evolve into coherent structures containing long streamwise velocity streaks that are flanked by quasi-streamwise vortices; some of these impulses produce hairpin vortices. As these vortex–streak structures evolve, they grow in size to be nominally self-similar geometrically with an aspect ratio (streamwise to wall-normal) of approximately 10, while their kinetic energy density decays monotonically. The topology of the vortex–streak structures is not sensitive to the location of the impulse, but is dependent on the direction of the impulsive body force. All of these vortex–streak structures are attached to the wall, and their Reynolds stresses collapse when scaled by distance from the wall, consistent with Townsend’s attached-eddy hypothesis.


Author(s):  
Ali Reza Mazaheri ◽  
Goodarz Ahmadi ◽  
Haifeng Zhang

Effects of bounce on particle transport, deposition and removal in turbulent channel flow are studied. The pseudo-spectral method is used to generate the instantaneous turbulent fluid velocity field by Direct Numerical Simulation (DNS) procedure. The particle equation of motion includes all the relevant hydrodynamic forces. In addition, simulation accounts for particle adhesion, resuspension and rebound processes. For particle bounce from the surface, the critical velocity is evaluated and is used in the analysis. Effects of bounce during particle-wall collisions on the deposition rate are also studied.


Author(s):  
Z. Wu ◽  
J. B. Young

This paper deals with particle deposition onto solid walls from turbulent flows. The aim of the study is to model particle deposition in industrial flows, such as the one in gas turbines. The numerical study has been carried out with a two fluid approach. The possible contribution to the deposition from Brownian diffusion, turbulent diffusion and shear-induced lift force are considered in the study. Three types of turbulent two-phase flows have been studied: turbulent channel flow, turbulent flow in a bent duct and turbulent flow in a turbine blade cascade. In the turbulent channel flow case, the numerical results from a two-dimensional code show good agreement with numerical and experimental results from other resources. Deposition problem in a bent duct flow is introduced to study the effect of curvature. Finally, the deposition of small particles on a cascade of turbine blades is simulated. The results show that the current two fluid models are capable of predicting particle deposition rates in complex industrial flows.


2016 ◽  
Vol 804 ◽  
pp. 5-23 ◽  
Author(s):  
Alain Pumir ◽  
Haitao Xu ◽  
Eric D. Siggia

In a channel flow, the velocity fluctuations are inhomogeneous and anisotropic. Yet, the small-scale properties of the flow are expected to behave in an isotropic manner in the very-large-Reynolds-number limit. We consider the statistical properties of small-scale velocity fluctuations in a turbulent channel flow at moderately high Reynolds number ($Re_{\unicode[STIX]{x1D70F}}\approx 1000$), using the Johns Hopkins University Turbulence Database. Away from the wall, in the logarithmic layer, the skewness of the normal derivative of the streamwise velocity fluctuation is approximately constant, of order 1, while the Reynolds number based on the Taylor scale is $R_{\unicode[STIX]{x1D706}}\approx 150$. This defines a small-scale anisotropy that is stronger than in turbulent homogeneous shear flows at comparable values of $R_{\unicode[STIX]{x1D706}}$. In contrast, the vorticity–strain correlations that characterize homogeneous isotropic turbulence are nearly unchanged in channel flow even though they do vary with distance from the wall with an exponent that can be inferred from the local dissipation. Our results demonstrate that the statistical properties of the fluctuating velocity gradient in turbulent channel flow are characterized, on one hand, by observables that are insensitive to the anisotropy, and behave as in homogeneous isotropic flows, and on the other hand by quantities that are much more sensitive to the anisotropy. How this seemingly contradictory situation emerges from the simultaneous action of the flux of energy to small scales and the transport of momentum away from the wall remains to be elucidated.


2012 ◽  
Vol 699 ◽  
pp. 50-78 ◽  
Author(s):  
G. Sardina ◽  
P. Schlatter ◽  
L. Brandt ◽  
F. Picano ◽  
C. M. Casciola

AbstractWe study the two main phenomenologies associated with the transport of inertial particles in turbulent flows, turbophoresis and small-scale clustering. Turbophoresis describes the turbulence-induced wall accumulation of particles dispersed in wall turbulence, while small-scale clustering is a form of local segregation that affects the particle distribution in the presence of fine-scale turbulence. Despite the fact that the two aspects are usually addressed separately, this paper shows that they occur simultaneously in wall-bounded flows, where they represent different aspects of the same process. We study these phenomena by post-processing data from a direct numerical simulation of turbulent channel flow with different populations of inertial particles. It is shown that artificial domain truncation can easily alter the mean particle concentration profile, unless the domain is large enough to exclude possible correlation of the turbulence and the near-wall particle aggregates. The data show a strong link between accumulation level and clustering intensity in the near-wall region. At statistical steady state, most accumulating particles aggregate in strongly directional and almost filamentary structures, as found by considering suitable two-point observables able to extract clustering intensity and anisotropy. The analysis provides quantitative indications of the wall-segregation process as a function of the particle inertia. It is shown that, although the most wall-accumulating particles are too heavy to segregate in homogeneous turbulence, they exhibit the most intense local small-scale clustering near the wall as measured by the singularity exponent of the particle pair correlation function.


Sign in / Sign up

Export Citation Format

Share Document