Stability of internal gravity wave beams to three-dimensional modulations

2013 ◽  
Vol 736 ◽  
pp. 67-90 ◽  
Author(s):  
T. Kataoka ◽  
T. R. Akylas

AbstractThe linear stability of uniform, plane internal wave beams with locally confined spatial profile, in a stratified fluid of constant buoyancy frequency, is discussed. The associated eigenvalue problem is solved asymptotically, assuming perturbations of long wavelength relative to the beam width. In this limit, instability is found only for oblique disturbances which vary in the along-beam and the horizontal transverse directions. The mechanism of instability is a first-harmonic–mean resonant interaction between the underlying wave beam and three-dimensional perturbations that comprise a time-harmonic component, with the beam frequency, and a mean flow. Progressive beams which transport energy in one direction, in particular, are unstable if the beam steepness exceeds a certain threshold value, whereas purely standing beams are unstable even at infinitesimal steepness. A distinguishing feature of this three-dimensional modulational instability is the generation of circulating horizontal mean flows at large distances from the vicinity of the beam.

2015 ◽  
Vol 769 ◽  
pp. 621-634 ◽  
Author(s):  
T. Kataoka ◽  
T. R. Akylas

The three-dimensional propagation of internal gravity wave beams in a uniformly stratified Boussinesq fluid is discussed, assuming that variations in the along-beam and transverse directions are of long length scale relative to the beam width. This situation applies, for instance, to the far-field behaviour of a wave beam generated by a horizontal line source with weak transverse dependence. In contrast to the two-dimensional case of purely along-beam variations, where nonlinear effects are minor even for beams of finite amplitude, three-dimensional nonlinear interactions trigger the transfer of energy to a circulating horizontal time-mean flow. This resonant beam–mean-flow coupling is analysed, and a system of two evolution equations is derived for the propagation of a small-amplitude beam along with the induced mean flow. This model explains the salient features of the experimental observations of Bordes et al. (Phys. Fluids, vol. 24, 2012, 086602).


2017 ◽  
Vol 830 ◽  
pp. 660-680 ◽  
Author(s):  
T. Kataoka ◽  
S. J. Ghaemsaidi ◽  
N. Holzenberger ◽  
T. Peacock ◽  
T. R. Akylas

The generation of internal gravity waves by a vertically oscillating cylinder that is tilted to the horizontal in a stratified Boussinesq fluid of constant buoyancy frequency, $N$, is investigated. This variant of the widely studied horizontal configuration – where a cylinder aligned with a plane of constant gravitational potential induces four wave beams that emanate from the cylinder, forming a cross pattern known as the ‘St. Andrew’s Cross’ – brings out certain unique features of radiated internal waves from a line source tilted to the horizontal. Specifically, simple kinematic considerations reveal that for a cylinder inclined by a given angle $\unicode[STIX]{x1D719}$ to the horizontal, there is a cutoff frequency, $N\sin \unicode[STIX]{x1D719}$, below which there is no longer a radiated wave field. Furthermore, three-dimensional effects due to the finite length of the cylinder, which are minor in the horizontal configuration, become a significant factor and eventually dominate the wave field as the cutoff frequency is approached; these results are confirmed by supporting laboratory experiments. The kinematic analysis, moreover, suggests a resonance phenomenon near the cutoff frequency as the group-velocity component perpendicular to the cylinder direction vanishes at cutoff; as a result, energy cannot be easily radiated away from the source, and nonlinear and viscous effects are likely to come into play. This scenario is examined by adapting the model for three-dimensional wave beams developed in Kataoka & Akylas (J. Fluid Mech., vol. 769, 2015, pp. 621–634) to the near-resonant wave field due to a tilted line source of large but finite length. According to this model, the combination of three-dimensional, nonlinear and viscous effects near cutoff triggers transfer of energy, through the action of Reynolds stresses, to a circulating horizontal mean flow. Experimental evidence of such an induced mean flow near cutoff is also presented.


2018 ◽  
Vol 846 ◽  
pp. 815-833 ◽  
Author(s):  
Chen Wang ◽  
Neil J. Balmforth

Strato-rotational instability (SRI) is normally interpreted as the resonant interactions between normal modes of the internal or Kelvin variety in three-dimensional settings in which the stratification and rotation are orthogonal to both the background flow and its shear. Using a combination of asymptotic analysis and numerical solution of the linear eigenvalue problem for plane Couette flow, it is shown that such resonant interactions can be destroyed by certain singular critical levels. These levels are not classical critical levels, where the phase speed $c$ of a normal mode matches the mean flow speed $U$, but are a different type of singularity where $(c-U)$ matches a characteristic gravity-wave speed $\pm N/k$, based on the buoyancy frequency $N$ and streamwise horizontal wavenumber $k$. Instead, it is shown that a variant of SRI can occur due to the coupling of a Kelvin or internal wave to such ‘baroclinic’ critical levels. Two characteristic situations are identified and explored, and the conservation law for pseudo-momentum is used to rationalize the physical mechanism of instability. The critical level coupling removes the requirement for resonance near specific wavenumbers $k$, resulting in an extensive continuous band of unstable modes.


1994 ◽  
Vol 272 ◽  
pp. 255-284 ◽  
Author(s):  
K. B. Winters ◽  
E. A. D’Asaro

The behaviour of internal gravity wave packets approaching a critical level is investigated through numerical simulation. Initial-value problems are formulated for both small- and large-amplitude wave packets. Wave propagation and the early stages of interaction with the mean shear are two-dimensional and result in the trapping of wave energy near a critical level. The subsequent dynamics of wave instability, however, are fundamentally different for two- and three-dimensional calculations. Three-dimensionality develops by transverse convective instability of the two-dimensional wave. The initialy two-dimensional flow eventually collapses into quasi-horizontal vortical structures. A detailed energy balance is presented. Of the initial wave energy, roughly one third reflects, one third results in mean flow acceleration and the remainder cascades to small scales where it is dissipated. The detailed budget depends on the wave amplitude, the amount of wave reflection being particularly sensitive.


2010 ◽  
Vol 67 (5) ◽  
pp. 1632-1642 ◽  
Author(s):  
J. Marty ◽  
F. Dalaudier

Abstract A three-dimensional linear spectral numerical model is proposed to simulate the propagation of internal gravity wave fluctuations in a stably stratified atmosphere. The model is developed to get first-order estimations of gravity wave fluctuations produced by identified sources. It is based on the solutions of the linearized fundamental fluid equations and uses the fully compressible dispersion relation for inertia–gravity waves. The spectral implementation excludes situations involving spatial variations of buoyancy frequency or background wind. However, density stratification variations are taken into account in the calculation of fluctuation amplitudes. In addition to gravity wave packet free propagation, the model handles both impulsive and continuous sources. It can account for spatial and temporal variations of the sources, encompassing a broad range of physical situations. The method is validated with a monochromatic pressure monopole, which is known to generate St. Andrew’s cross–shaped waves. It is then applied to the case of the ozone layer cooling during a total solar eclipse. The asymptotic response to a Gaussian thermal forcing traveling at constant velocity and the transient response to the 4 December 2002 eclipse show good agreement with previous numerical simulations. Further applications for the model are discussed.


1982 ◽  
Vol 119 ◽  
pp. 367-377 ◽  
Author(s):  
J. Klostermeyer

The equations describing parametric instabilities of a finite-amplitude internal gravity wave in an inviscid Boussinesq fluid are studied numerically. By improving the numerical approach, discarding the concept of spurious roots and considering the whole range of directions of the Floquet vector, Mied's work is generalized to its full complexity. In the limit of large disturbance wavenumbers, the unstable disturbances propagate in the directions of the two infinite curve segments of the related resonant-interaction diagram. They can therefore be classified into two families which are characterized by special propagation directions. At high wavenumbers the maximum growth rates converge to limits which do not depend on the direction of the Floquet vector. The limits are different for both families; the disturbance waves propagating at the smaller angle to the basic gravity wave grow at the larger rate.


2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.


2003 ◽  
Vol 14 (04) ◽  
pp. 529-536 ◽  
Author(s):  
DIRK KURTSIEFER

The present article deals with the critical value pc of the three-dimensional bootstrap percolation. We will check the behavior of pc for different lengths of the lattice and additionally we will scale pc in the limit of an infinite lattice.


A method based on the Radon transform is presented to determine the displacement field in a general anisotropic solid due to the application of a time-harmonic point force. The Radon transform reduces the system of coupled partial differential equations for the displacement components to a system of coupled ordinary differential equations. This system is reduced to an uncoupled form by the use of properties of eigenvectors and eigenvalues. The resulting simplified system can be solved easily. A back transformation to the original coordinate system and a subsequent application of the inverse Radon transform yields the displacements as a summation of a regular elastodynamic term and a singular static term. Both terms are integrals over a unit sphere. For the regular dynamic term, the surface integration can be evaluated numerically without difficulty. For the singular static term, the surface integral has been reduced to a line integral over half a unit circle. Reductions to the cases of isotropy and transverse isotropy have been worked out in detail. Examples illustrate applications of the method.


2011 ◽  
Vol 97 (5) ◽  
pp. 728-733
Author(s):  
Yang Liu ◽  
Xiasheng Guo ◽  
Zhao Da ◽  
Dong Zhang ◽  
Xiufen Gong

This article proposes an acoustic nonlinear approach combined with the time reversal technique to image cracks in long bones. In this method, the scattered ultrasound generated from the crack is recorded, and the third harmonic nonlinear component of the ultrasonic signal is used to reconstruct an image of the crack by the time reversal process. Numerical simulations are performed to examine the validity of this approach. The fatigue long bone is modeled as a hollow cylinder with a crack of 1, 0.1, and 0.225 mm in axial, radial and circumferential directions respectively. A broadband 500 kHz ultrasonic signal is used as the exciting signal, and the extended three-dimensional Preisach-Mayergoyz model is used to describe the nonclassical nonlinear dynamics of the crack. Time reversal is carried out by using the filtered third harmonic component. The localization capability depends on the radial depth of the crack.


Sign in / Sign up

Export Citation Format

Share Document