scholarly journals Disruption of states by a stable stratification

2015 ◽  
Vol 784 ◽  
pp. 548-564 ◽  
Author(s):  
T. S. Eaves ◽  
C. P. Caulfield

We identify ‘minimal seeds’ for turbulence, i.e. initial conditions of the smallest possible total perturbation energy density $E_{c}$ that trigger turbulence from the laminar state, in stratified plane Couette flow, the flow between two horizontal plates of separation $2H$, moving with relative velocity $2{\rm\Delta}U$, across which a constant density difference $2{\rm\Delta}{\it\rho}$ from a reference density ${\it\rho}_{r}$ is maintained. To find minimal seeds, we use the ‘direct-adjoint-looping’ (DAL) method for finding nonlinear optimal perturbations that optimise the time-averaged total dissipation of energy in the flow. These minimal seeds are located adjacent to the edge manifold, the manifold in state space that separates trajectories which transition to turbulence from those which eventually decay to the laminar state. The edge manifold is also the stable manifold of the system’s ‘edge state’. Therefore, the trajectories from the minimal seed initial conditions spend a large amount of time in the vicinity of some states: the edge state; another state contained within the edge manifold; or even in dynamically slowly varying regions of the edge manifold, allowing us to investigate the effects of a stable stratification on any coherent structures associated with such states. In unstratified plane Couette flow, these coherent structures are manifestations of the self-sustaining process (SSP) deduced on physical grounds by Waleffe (Phys. Fluids, vol. 9, 1997, pp. 883–900), or equivalently finite Reynolds number solutions of the vortex–wave interaction (VWI) asymptotic equations initially derived mathematically by Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666). The stratified coherent states we identify at moderate Reynolds number display an altered form from their unstratified counterparts for bulk Richardson numbers $\mathit{Ri}_{B}=g{\rm\Delta}{\it\rho}H/({\it\rho}_{r}{\rm\Delta}U^{2})=O(\mathit{Re}^{-1})$, and exhibit chaotic motion for larger $\mathit{Ri}_{B}$. We demonstrate that at hith Reynolds number the suppression of vertical motions by stratification strongly disrupts input from the waves to the roll velocity structures, thus preventing the waves from reinforcing the viscously decaying roll structures adequately, when $\mathit{Ri}_{B}=O(\mathit{Re}^{-2})$.

2019 ◽  
Vol 867 ◽  
pp. 414-437 ◽  
Author(s):  
Anton Pershin ◽  
Cédric Beaume ◽  
Steven M. Tobias

Unsteady spatially localized states such as puffs, slugs or spots play an important role in transition to turbulence. In plane Couette flow, steady versions of these states are found on two intertwined solution branches describing homoclinic snaking (Schneider et al., Phys. Rev. Lett., vol. 104, 2010, 104501). These branches can be used to generate a number of spatially localized initial conditions whose transition can be investigated. From the low Reynolds numbers where homoclinic snaking is first observed ($Re<175$) to transitional ones ($Re\approx 325$), these spatially localized states traverse various regimes where their relaminarization time and dynamics are affected by the dynamical structure of phase space. These regimes are reported and characterized in this paper for a $4\unicode[STIX]{x03C0}$-periodic domain in the streamwise direction as a function of the two remaining variables: the Reynolds number and the width of the localized pattern. Close to the snaking, localized states are attracted by spatially localized periodic orbits before relaminarizing. At larger values of the Reynolds number, the flow enters a chaotic transient of variable duration before relaminarizing. Very long chaotic transients ($t>10^{4}$) can be observed without difficulty for relatively low values of the Reynolds number ($Re\approx 250$).


2017 ◽  
Vol 826 ◽  
pp. 583-614 ◽  
Author(s):  
D. Olvera ◽  
R. R. Kerswell

The existence of exact coherent structures in stably stratified plane Couette flow (gravity perpendicular to the plates) is investigated over Reynolds–Richardson number ($Re$–$Ri_{b}$) space for a fluid of unit Prandtl number $(Pr=1)$ using a combination of numerical and asymptotic techniques. Two states are repeatedly discovered using edge tracking – EQ7 and EQ7-1 in the nomenclature of Gibson & Brand (J. Fluid Mech., vol. 745, 2014, pp. 25–61) – and found to connect with two-dimensional convective roll solutions when tracked to negative $Ri_{b}$ (the Rayleigh–Bénard problem with shear). Both these states and Nagata’s (J. Fluid Mech., vol. 217, 1990, pp. 519–527) original exact solution feel the presence of stable stratification when $Ri_{b}=O(Re^{-2})$ or equivalently when the Rayleigh number $Ra:=-Ri_{b}Re^{2}Pr=O(1)$. This is confirmed via a stratified extension of the vortex wave interaction theory of Hall & Sherwin (J. Fluid Mech., vol. 661, 2010, pp. 178–205). If the stratification is increased further, EQ7 is found to progressively spanwise and cross-stream localise until a second regime is entered at $Ri_{b}=O(Re^{-2/3})$. This corresponds to a stratified version of the boundary region equations regime of Deguchi, Hall & Walton (J. Fluid Mech., vol. 721, 2013, pp. 58–85). Increasing the stratification further appears to lead to a third, ultimate regime where $Ri_{b}=O(1)$ in which the flow fully localises in all three directions at the minimal Kolmogorov scale which then corresponds to the Osmidov scale. Implications for the laminar–turbulent boundary in the ($Re$–$Ri_{b}$) plane are briefly discussed.


Author(s):  
Bruno Eckhardt ◽  
Holger Faisst ◽  
Armin Schmiegel ◽  
Tobias M Schneider

Plane Couette flow and pressure-driven pipe flow are two examples of flows where turbulence sets in while the laminar profile is still linearly stable. Experiments and numerical studies have shown that the transition has features compatible with the formation of a strange saddle rather than an attractor. In particular, the transition depends sensitively on initial conditions and the turbulent state is not persistent but has an exponential distribution of lifetimes. Embedded within the turbulent dynamics are coherent structures, which transiently show up in the temporal evolution of the turbulent flow. Here we summarize the evidence for this transition scenario in these two flows, with an emphasis on lifetime studies in the case of plane Couette flow and on the coherent structures in pipe flow.


2019 ◽  
Vol 862 ◽  
Author(s):  
Julius Rhoan T. Lustro ◽  
Genta Kawahara ◽  
Lennaert van Veen ◽  
Masaki Shimizu ◽  
Hiroshi Kokubu

The onset of transient turbulence in minimal plane Couette flow has been identified theoretically as homoclinic tangency with respect to a simple edge state for the Navier–Stokes equation, i.e., the gentle periodic orbit (the lower branch of a saddle-node pair) found by Kawahara & Kida (J. Fluid Mech., vol. 449, 2001, pp. 291–300). The first tangency of a pair of distinct homoclinic orbits to this periodic edge state has been discovered at Reynolds number $Re\equiv Uh/\unicode[STIX]{x1D708}=Re_{T}\approx 240.88$ ($U$, $h$, and $\unicode[STIX]{x1D708}$ being half the difference of the two wall velocities, half the wall separation, and the kinematic viscosity of fluid, respectively). At $Re>Re_{T}$ a Smale horseshoe appears on the Poincaré section through transversal homoclinic points to generate a transient chaos that eventually relaminarises. In numerical experiments a sustaining chaos, which is a consequence of period-doubling cascade stemming from the upper branch of another saddle-node pair of periodic orbits, is observed in a narrow range of the Reynolds number, $Re\approx 240.40$–240.46. At the upper edge of this $Re$ range it is found that the chaotic set touches the lower branch of this pair, i.e., another edge state. The corresponding chaotic attractor is replaced by a chaotic saddle at $Re\approx 240.46$, and subsequently this saddle touches the gentle periodic edge state on the boundary of the laminar basin at the tangency Reynolds number $Re=Re_{T}$. After this crisis on the boundary of the laminar basin, for $Re>Re_{T}$, chaotic transients that eventually relaminarise can be observed.


1998 ◽  
Vol 358 ◽  
pp. 357-378 ◽  
Author(s):  
M. NAGATA

The stability of nonlinear tertiary solutions in rotating plane Couette flow is examined numerically. It is found that the tertiary flows, which bifurcate from two-dimensional streamwise vortex flows, are stable within a certain range of the rotation rate when the Reynolds number is relatively small. The stability boundary is determined by perturbations which are subharmonic in the streamwise direction. As the Reynolds number is increased, the rotation range for the stable tertiary motions is destroyed gradually by oscillatory instabilities. We expect that the tertiary flow is overtaken by time-dependent motions for large Reynolds numbers. The results are compared with the recent experimental observation by Tillmark & Alfredsson (1996).


2018 ◽  
Vol 853 ◽  
pp. 205-234 ◽  
Author(s):  
Giulio Facchini ◽  
Benjamin Favier ◽  
Patrice Le Gal ◽  
Meng Wang ◽  
Michael Le Bars

We present the stability analysis of a plane Couette flow which is stably stratified in the vertical direction orthogonal to the horizontal shear. Interest in such a flow comes from geophysical and astrophysical applications where background shear and vertical stable stratification commonly coexist. We perform the linear stability analysis of the flow in a domain which is periodic in the streamwise and vertical directions and confined in the cross-stream direction. The stability diagram is constructed as a function of the Reynolds number $Re$ and the Froude number $Fr$, which compares the importance of shear and stratification. We find that the flow becomes unstable when shear and stratification are of the same order (i.e. $Fr\sim 1$) and above a moderate value of the Reynolds number $Re\gtrsim 700$. The instability results from a wave resonance mechanism already known in the context of channel flows – for instance, unstratified plane Couette flow in the shallow-water approximation. The result is confirmed by fully nonlinear direct numerical simulations and, to the best of our knowledge, constitutes the first evidence of linear instability in a vertically stratified plane Couette flow. We also report the study of a laboratory flow generated by a transparent belt entrained by two vertical cylinders and immersed in a tank filled with salty water, linearly stratified in density. We observe the emergence of a robust spatio-temporal pattern close to the threshold values of $Fr$ and $Re$ indicated by linear analysis, and explore the accessible part of the stability diagram. With the support of numerical simulations we conclude that the observed pattern is a signature of the same instability predicted by the linear theory, although slightly modified due to streamwise confinement.


2014 ◽  
Vol 750 ◽  
Author(s):  
E. Brand ◽  
J. F. Gibson

AbstractWe present an equilibrium solution of plane Couette flow that is exponentially localized in both the spanwise and streamwise directions. The solution is similar in size and structure to previously computed turbulent spots and localized, chaotically wandering edge states of plane Couette flow. A linear analysis of dominant terms in the Navier–Stokes equations shows how the exponential decay rate and the wall-normal overhang profile of the streamwise tails are governed by the Reynolds number and the dominant spanwise wavenumber. Perturbations of the solution along its leading eigenfunctions cause rapid disruption of the interior roll-streak structure and formation of a turbulent spot, whose growth or decay depends on the Reynolds number and the choice of perturbation.


Sign in / Sign up

Export Citation Format

Share Document