The virtual waiting time of the GI/G/1 queue in heavy traffic

1971 ◽  
Vol 3 (02) ◽  
pp. 249-268 ◽  
Author(s):  
E. Kyprianou

Investigations in the theory of heavy traffic were initiated by Kingman ([5], [6] and [7]) in an effort to obtain approximations for stable queues. He considered the Markov chains {W n i } of a sequence {Q i } of stable GI/G/1 queues, where W n i is the waiting time of the nth customer in the ith queueing system, and by making use of Spitzer's identity obtained limit theorems as first n → ∞ and then ρ i ↑ 1 as i → ∞. Here &rH i is the traffic intensity of the ith queueing system. After Kingman the theory of heavy traffic was developed by a number of Russians mainly. Prohorov [10] considered the double sequence of waiting times {W n i } and obtained limit theorems in the three cases when n 1/2(ρ i -1) approaches (i) - ∞, (ii) -δ and (iii) 0 as n → ∞ and i → ∞ simultaneously. The case (i) includes the result of Kingman. Viskov [12] also studied the double sequence {W n i } and obtained limits in the two cases when n 1/2(ρ i − 1) approaches + δ and + ∞ as n → ∞ and i → ∞ simultaneously.

1971 ◽  
Vol 3 (2) ◽  
pp. 249-268 ◽  
Author(s):  
E. Kyprianou

Investigations in the theory of heavy traffic were initiated by Kingman ([5], [6] and [7]) in an effort to obtain approximations for stable queues. He considered the Markov chains {Wni} of a sequence {Qi} of stable GI/G/1 queues, where Wni is the waiting time of the nth customer in the ith queueing system, and by making use of Spitzer's identity obtained limit theorems as first n → ∞ and then ρi ↑ 1 as i → ∞. Here &rHi is the traffic intensity of the ith queueing system. After Kingman the theory of heavy traffic was developed by a number of Russians mainly. Prohorov [10] considered the double sequence of waiting times {Wni} and obtained limit theorems in the three cases when n1/2(ρi-1) approaches (i) - ∞, (ii) -δ and (iii) 0 as n → ∞ and i → ∞ simultaneously. The case (i) includes the result of Kingman. Viskov [12] also studied the double sequence {Wni} and obtained limits in the two cases when n1/2(ρi − 1) approaches + δ and + ∞ as n → ∞ and i → ∞ simultaneously.


1994 ◽  
Vol 26 (01) ◽  
pp. 242-257
Author(s):  
Władysław Szczotka ◽  
Krzysztof Topolski

Consider the GI/G/1 queueing system with traffic intensity 1 and let wk and lk denote the actual waiting time of the kth unit and the number of units present in the system at the kth arrival including the kth unit, respectively. Furthermore let τ denote the number of units served during the first busy period and μ the intensity of the service. It is shown that as k →∞, where a is some known constant, , , and are independent, is a Brownian meander and is a Wiener process. A similar result is also given for the difference of virtual waiting time and queue length processes. These results are also extended to a wider class of queueing systems than GI/G/1 queues and a scheme of series of queues.


1994 ◽  
Vol 26 (1) ◽  
pp. 242-257
Author(s):  
Władysław Szczotka ◽  
Krzysztof Topolski

Consider the GI/G/1 queueing system with traffic intensity 1 and let wk and lk denote the actual waiting time of the kth unit and the number of units present in the system at the kth arrival including the kth unit, respectively. Furthermore let τ denote the number of units served during the first busy period and μ the intensity of the service. It is shown that as k →∞, where a is some known constant, , , and are independent, is a Brownian meander and is a Wiener process. A similar result is also given for the difference of virtual waiting time and queue length processes. These results are also extended to a wider class of queueing systems than GI/G/1 queues and a scheme of series of queues.


1989 ◽  
Vol 21 (02) ◽  
pp. 485-487 ◽  
Author(s):  
G. I. Falin

An analytic approach to the diffusion approximation in queueing due to Burman (1979) is applied to the M(t)/G/1/∞ queueing system with periodic Poisson arrivals. We show that under heavy traffic the virtual waiting time process can be approximated by a certain Wiener process with reflecting barrier at 0.


1989 ◽  
Vol 21 (02) ◽  
pp. 451-469 ◽  
Author(s):  
Zhang Hanqin ◽  
Wang Rongxin

The queueing system considered in this paper consists of r independent arrival channels and s independent service channels, where, as usual, the arrival and service channels are independent. In the queueing system, each server of the system has his own queue and arriving customers join the shortest line in the system. We give functional central limit theorems for the stochastic processes characterizing this system after appropriately scaling and translating the processes in traffic intensity ρ > 1.


1972 ◽  
Vol 9 (1) ◽  
pp. 185-191 ◽  
Author(s):  
Ward Whitt

A bound on the rate of convergence and sufficient conditions for the convergence of moments are obtained for the sequence of waiting times in the GI/G/1 queue when the traffic intensity is at the critical value ρ = 1.


1972 ◽  
Vol 9 (01) ◽  
pp. 185-191 ◽  
Author(s):  
Ward Whitt

A bound on the rate of convergence and sufficient conditions for the convergence of moments are obtained for the sequence of waiting times in the GI/G/1 queue when the traffic intensity is at the critical value ρ = 1.


1972 ◽  
Vol 4 (02) ◽  
pp. 339-356
Author(s):  
J. W. Cohen

For the single server queueing system, whose distributions of service and inter-arrival times have rational Laplace-Stieltjes transforms, limit theorems are derived for the supremum of the virtual waiting time during k successive busy cycles for k→∞. Similarly, for the supremum of the actual waiting times of all customers arriving in k successive busy cycles. Only the cases with the load of the system less than one and equal to one are considered. The limit distributions are extreme value distributions. The results are obtained by first deriving a number of asymptotic expressions for the quantities which govern the analytic description of the system K m /K n /1. Using these asymptotic relations limit theorems for entrance times can also be obtained, a few examples are given.


1988 ◽  
Vol 25 (03) ◽  
pp. 596-611
Author(s):  
Xing Jin

This paper provides Berry–Esseen rate of limit theorem concerning the number of customers in a GI/G/K queueing system observed at arrival epochs for traffic intensity ρ > 1. The main method employed involves establishing several equalities about waiting time and queue length.


1989 ◽  
Vol 21 (2) ◽  
pp. 485-487 ◽  
Author(s):  
G. I. Falin

An analytic approach to the diffusion approximation in queueing due to Burman (1979) is applied to the M(t)/G/1/∞ queueing system with periodic Poisson arrivals. We show that under heavy traffic the virtual waiting time process can be approximated by a certain Wiener process with reflecting barrier at 0.


Sign in / Sign up

Export Citation Format

Share Document