scholarly journals Ellagic acid inhibits IL-1β-induced cell adhesion molecule expression in human umbilical vein endothelial cells

2007 ◽  
Vol 97 (4) ◽  
pp. 692-698 ◽  
Author(s):  
Ya-Mei Yu ◽  
Zhi-Hong Wang ◽  
Chung-Hsien Liu ◽  
Chin-Seng Chen

Expression of cell adhesion molecules by endothelium and the attachment of monocytes to endothelium may play a major role in atherosclerosis. Ellagic acid (EA) is a phenolic compound found in fruits and nuts including raspberries, strawberries, grapes and walnuts. Previous studies have indicated that EA possesses antioxidant activity in vitro. In the present study, we investigated the effects of EA on the formation of intracellular reactive oxygen species, the translocation of NFκB and expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 and endothelial leucocyte adhesion molecule (E-selectin) induced by IL-1β in human umbilical vein endothelial cells (HUVEC). We found that EA significantly reduced the binding of human monocytic cell line, U937, to IL-1β-treated HUVEC. The production of reactive oxygen species by IL-1β was dose-dependently suppressed by EA. Supplementation with increasing doses of EA up to 50 μmol/l was most effective in inhibiting the expression of VCAM-1 and E-selectin. Furthermore, the inhibition of IL-1β-induced adhesion molecule expression by EA was manifested by the suppression of nuclear translocation of p65 and p50. In conclusion, EA inhibits IL-1β-induced nuclear translocation of p65 and p50, thereby suppressing the expression of VCAM-1 and E-selectin, resulting in decreased monocyte adhesion. Thus, EA has anti-inflammatory properties and may play an important role in the prevention of atherosclerosis.

2010 ◽  
Vol 88 (5) ◽  
pp. 576-583 ◽  
Author(s):  
Wentong Fang ◽  
Hongjian Li ◽  
Liaosheng Zhou ◽  
Lequn Su ◽  
Ying Liang ◽  
...  

Prostaglandin E1 (PGE1) is a member of the prostaglandins and has a variety of cardiovascular protective effects. Increasing attention has been paid to the anti-inflammation activity of PGE1, but little direct evidence has been found. We investigated the effects of PGE1 on cell adhesion and inflammation and the mechanisms responsible for this activity in tumor necrosis factor (TNF)-treated human umbilical vein endothelial cells. Results demonstrated that pretreatment with PGE1 decreased the adhesion between vascular endothelial cells and monocytes, reduced the expression of vascular cell adhesion molecule-1, intercellular adhesion molecule-1, and E-selectin in vascular endothelial cells. In addition, PGE1 suppressed TNF-induced NF-κB activation and production of reactive oxygen species. We concluded that PGE1 suppressed the vascular inflammatory process, which might be closely related to the inhibition of reactive oxygen species and NF-κB activation in human umbilical vein endothelial cells.


2019 ◽  
Vol 20 (21) ◽  
pp. 5383 ◽  
Author(s):  
Li Zhang ◽  
Feifei Wang ◽  
Qing Zhang ◽  
Qiuming Liang ◽  
Shumei Wang ◽  
...  

Inflammation is a key mediator in the progression of atherosclerosis (AS). Benzoinum, a resin secreted from the bark of Styrax tonkinensis, has been widely used as a form of traditional Chinese medicine in clinical settings to enhance cardiovascular function, but the active components of the resin responsible for those pharmaceutical effects remain unclear. To better clarify these components, a new phenylpropane derivative termed stybenpropol A was isolated from benzoinum and characterized via comprehensive spectra a nalysis. We further assessed how this phenylpropane derivative affected treatment of human umbilical vein endothelial cells (HUVECs) with tumor necrosis factor-α (TNF-α). Our results revealed that stybenpropol A reduced soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), interleukin-8 (IL-8), and interleukin-1β (IL-1β) expression by ELISA, inhibited apoptosis, and accelerated nitric oxide (NO) release in TNF-α-treated HUVECs. We further found that stybenpropol A decreased VCAM-1, ICAM-1, Bax, and caspase-9 protein levels, and increased the protein levels of Bcl-2, IKK-β, and IκB-α. This study identified a new, natural phenylpropane derivative of benzoinum, and is the first to reveal its cytoprotective effects in the context of TNF-α-treated HUVECs via regulation of the NF-κB and caspase-9 signaling pathways.


2013 ◽  
Vol 41 (03) ◽  
pp. 473-485 ◽  
Author(s):  
Gang Hu ◽  
Jiang Liu ◽  
Yong-Zhan Zhen ◽  
Jie Wei ◽  
Yue Qiao ◽  
...  

Reducing the expression of endothelial cell adhesion molecules (ECAMs) is known to decrease inflammation-induced vascular complications. In this study, we explored whether rhein can reduce the inflammation-induced expression of ECAMs in human umbilical vein endothelial cells (HUVECs) with or without lipopolysaccharide (LPS) stimulation. HUVECs were treated with different concentrations of rhein with or without 2.5 μg/ml LPS stimulation. Cell viability was assayed using the MTT method. Real-time PCR and Western blot analysis were used to measure the transcription and expression levels of ECAMs, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-SELECTIN and related signaling proteins. The results indicated that rhein (0–20 μmol/L) and LPS (0–10 μg/ml) had no effect on the viability of HUVECs. LPS could promote the expression of VCAM-1, ICAM-1 and E-SELECTIN. Rhein appeared to target VCAM-1, ICAM-1 and E-SELECTIN, with the transcription and expression of all three factors being reduced by the rhein treatment (10 and 20 μmol/L). The transcription and expression of VCAM-1 were also reduced by treatment with rhein (10 and 20 μmol/L) in the presence of LPS stimulation. In conclusion, rhein treatment reduced the expression of VCAM-1 in HUVECs via a p38-dependent pathway.


2020 ◽  
Vol 98 (3) ◽  
pp. 156-161
Author(s):  
Tianhai Wang ◽  
Hongge Zhu ◽  
Yanshen Hou ◽  
Wenming Duan ◽  
Fufen Meng ◽  
...  

Hyperglycemia mediates oxidative stress, thus inducing transcription factor nuclear factor kappa B (NF-κB) activation, increasing endothelial adhesion molecule expression and monocyte/endothelial interaction, and resulting in endothelial injury. Ketamine was reported to attenuate oxidative stress in many cases. In this research, we determined whether and how ketamine protects against high-glucose-mediated augmentation of monocyte/endothelial interaction and endothelial adhesion molecule expression in human umbilical vein endothelial cells. High glucose augmented monocyte/endothelial adhesion and endothelial adhesion molecule expression. High glucose induced reactive oxygen species (ROS) production and augmented phospho-protein kinase C (p-PKC) βII expression and PKC activity. Moreover, high glucose inhibited the inhibitory subunit of nuclear factor-κBα (IκBα) expression in the cytoplasm and induced NF-κB nuclear translocation. Importantly, the effects induced by high glucose were counteracted by ketamine treatment. Further, CGP53353, a PKC βII inhibitor, inhibited high-glucose-mediated NF-κB nuclear translocation, attenuated adhesion molecule expression, and reduced monocyte/endothelial interaction. Further, these effects of ketamine against high-glucose-induced endothelial injury were inhibited by phorbol 12-myristate 13-acetate, a PKC βII activator. In conclusion, ketamine, via reducing ROS accumulation, inhibited PKC βII Ser660 phosphorylation and PKC and NF-κB activation and reduced high-glucose-induced expression of endothelial adhesion molecules and monocyte/endothelial interaction.


Sign in / Sign up

Export Citation Format

Share Document