scholarly journals Comparison of purple carrot juice and β-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome

2010 ◽  
Vol 104 (9) ◽  
pp. 1322-1332 ◽  
Author(s):  
Hemant Poudyal ◽  
Sunil Panchal ◽  
Lindsay Brown

Anthocyanins, phenolic acids and carotenoids are the predominant phytochemicals present in purple carrots. These phytochemicals could be useful in treatment of the metabolic syndrome since anthocyanins improve dyslipidaemia, glucose tolerance, hypertension and insulin resistance; the phenolic acids may also protect against CVD and β-carotene may protect against oxidative processes. In the present study, we have compared the ability of purple carrot juice and β-carotene to reverse the structural and functional changes in rats fed a high-carbohydrate, high-fat diet as a model of the metabolic syndrome induced by diet. Cardiac structure and function were defined by histology, echocardiography and in isolated hearts and blood vessels; liver structure and function, oxidative stress and inflammation were defined by histology and plasma markers. High-carbohydrate, high-fat diet-fed rats developed hypertension, cardiac fibrosis, increased cardiac stiffness, endothelial dysfunction, impaired glucose tolerance, increased abdominal fat deposition, altered plasma lipid profile, liver fibrosis and increased plasma liver enzymes together with increased plasma markers of oxidative stress and inflammation as well as increased inflammatory cell infiltration. Purple carrot juice attenuated or reversed all changes while β-carotene did not reduce oxidative stress, cardiac stiffness or hepatic fat deposition. As the juice itself contained low concentrations of carotenoids, it is likely that the anthocyanins are responsible for the antioxidant and anti-inflammatory properties of purple carrot juice to improve glucose tolerance as well as cardiovascular and hepatic structure and function.

2017 ◽  
Vol 7 (2) ◽  
pp. 130-136
Author(s):  
K. V. Derkach ◽  
V. M. Bondareva ◽  
A. P. Trashkov ◽  
O. V. Chistyakova ◽  
N. A. Verlov ◽  
...  

2020 ◽  
Vol 11 (9) ◽  
pp. 7468-7480
Author(s):  
Peng Du ◽  
Junhan Zhou ◽  
Li Zhang ◽  
Jiaojiao Zhang ◽  
Nan Li ◽  
...  

Polyphenols extracted from Shanxi-aged vinegar (SAVEP) can alleviate oxidative stress and inflammatory stress caused by high-fat diets, improving intestinal microbial disorders. SAVEP may be a novel treatment of the metabolic syndrome.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 253
Author(s):  
Graciela Gavia-García ◽  
Juana Rosado-Pérez ◽  
Taide Laurita Arista-Ugalde ◽  
Itzen Aguiñiga-Sánchez ◽  
Edelmiro Santiago-Osorio ◽  
...  

A great amount of scientific evidence supports that Oxidative Stress (OxS) can contribute to telomeric attrition and also plays an important role in the development of certain age-related diseases, among them the metabolic syndrome (MetS), which is characterised by clinical and biochemical alterations such as obesity, dyslipidaemia, arterial hypertension, hyperglycaemia, and insulin resistance, all of which are considered as risk factors for type 2 diabetes mellitus (T2DM) and cardiovascular diseases, which are associated in turn with an increase of OxS. In this sense, we review scientific evidence that supports the association between OxS with telomere length (TL) dynamics and the relationship with MetS components in aging. It was analysed whether each MetS component affects the telomere length separately or if they all affect it together. Likewise, this review provides a summary of the structure and function of telomeres and telomerase, the mechanisms of telomeric DNA repair, how telomere length may influence the fate of cells or be linked to inflammation and the development of age-related diseases, and finally, how the lifestyles can affect telomere length.


2018 ◽  
Vol 120 (7) ◽  
pp. 751-762 ◽  
Author(s):  
Giorgio Biasiotto ◽  
Isabella Zanella ◽  
Federica Predolini ◽  
Ivonne Archetti ◽  
Moris Cadei ◽  
...  

Abstract7-Hydroxymatairesinol (7-HMR) is a plant lignan abundant in various concentrations in plant foods. The objective of this study was to test HMRLignan™, a purified form of 7-HMR, and the correspondingPicea abiesextract (total extractP. abies; TEP) as dietary supplements on a background of a high-fat diet (HFD)-induced metabolic syndrome in mice and in the 3T3-L1 adipogenesis model. Mice, 3 weeks old, were fed a HFD for 60 d. Subgroups were treated with 3 mg/kg body weight 7-HMR (HMRLignan™) or 10 mg/kg body weight TEP by oral administration. 7-HMR and TEP limited the increase in body weight (−11 and −13 %) and fat mass (−11 and −18 %) in the HFD-fed mice. Epididymal adipocytes were 19 and −12 % smaller and the liver was less steatotic (−62 and −65 %). Serum lipids decreased in TEP-treated mice (−11 % cholesterol, −23 % LDL and −15 % TAG) and sugar metabolism was ameliorated by both lignan preparations, as shown by a more than 70 % decrease in insulin secretion and insulin resistance. The expression of several metabolic genes was modulated by the HFD with an effect that was reversed by lignan. In 3T3-L1 cells, the 7-HMR metabolites enterolactone (ENL) and enterodiol (END) showed a 40 % inhibition of cell differentiation accompanied by the inhibited expression of the adipogenic genesPPARγ,C/EBPαandaP2. Furthermore, END and ENL caused a 10 % reduction in TAG uptake in HEPA 1–6 hepatoma cells. In conclusion, 7-HMR and TEP reduce metabolic imbalances typical of the metabolic syndrome and obesity in male mice, whereas their metabolites inhibit adipogenesis and lipid uptakein vitro.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Md. Abdullah Al Mamun ◽  
Md. Faruk ◽  
Md. Mizanur Rahman ◽  
Kamrun Nahar ◽  
Fariha Kabir ◽  
...  

Psidium guajava leaf is reported to contain many bioactive polyphenols which play an important role in the prevention and treatment of various diseases. Our investigation aimed to study the effect of Psidium guajava leaf powder supplementation on obesity and liver status by using experimental rats. To study the effects of guava leaf supplementation in high fat diet induced obesity, rats were randomly divided into four experimental groups (n=7), control (group I), control + guava leaf (group II), HCHF (group III), and HCHF + guava leaf (group IV). At the end of the experimental period (56 days), glucose intolerance, liver enzymes activities, antioxidant enzymes activities, and lipid and cholesterol profiles were evaluated. Our results revealed that guava leaf powder supplementation showed a significant reduction in fat deposition in obese rats. Moreover, liver enzyme functions were increased in high fat diet fed rats compared to the control rats significantly which were further ameliorated by guava leaf powder supplementation in high fat diet fed rats. High fat diet feeding also decreased the antioxidant enzyme functions and increased the lipid peroxidation products compared to the control rats. Guava leaf powder supplementation in high fat diet fed rats reduced the oxidative stress markers and reestablished antioxidant enzyme system in experimental animals. Guava leaf powder supplementation in high fat diet fed rats also showed a relative decrease in inflammatory cells infiltration and collagen deposition in the liver compared to the high fat diet fed rats. The present study suggests that the supplementation of guava leaf powder prevents obesity, improves glucose intolerance, and decreases inflammation and oxidative stress in liver of high carbohydrate high fat diet fed rats.


2018 ◽  
Vol 9 (2) ◽  
pp. 1079-1087 ◽  
Author(s):  
Mei Cheng ◽  
Xin Zhang ◽  
Jieyu Zhu ◽  
Lu Cheng ◽  
Jinxuan Cao ◽  
...  

We investigate the modulatory effect of oolong tea polyphenols on the intestinal microbiota in human flora-associated high fat diet induced obese mice.


2019 ◽  
Vol 63 (19) ◽  
pp. 1900425 ◽  
Author(s):  
Sergio Montserrat‐de la Paz ◽  
Maria C. Naranjo ◽  
Maria C. Millan‐Linares ◽  
Sergio Lopez ◽  
Rocio Abia ◽  
...  

2013 ◽  
Vol 24 (6) ◽  
pp. 1041-1052 ◽  
Author(s):  
Hemant Poudyal ◽  
Sunil K. Panchal ◽  
Leigh C. Ward ◽  
Lindsay Brown

Sign in / Sign up

Export Citation Format

Share Document