scholarly journals Prediction of fat-free mass and percentage of body fat in neonates using bioelectrical impedance analysis and anthropometric measures: validation against the PEA POD

2011 ◽  
Vol 107 (10) ◽  
pp. 1545-1552 ◽  
Author(s):  
Barbara E. Lingwood ◽  
Anne-Martine Storm van Leeuwen ◽  
Angela E. Carberry ◽  
Erin C. Fitzgerald ◽  
Leonie K. Callaway ◽  
...  

Accurate assessment of neonatal body composition is essential to studies investigating neonatal nutrition or developmental origins of obesity. Bioelectrical impedance analysis or bioimpedance analysis is inexpensive, non-invasive and portable, and is widely used in adults for the assessment of body composition. There are currently no prediction algorithms using bioimpedance analysis in neonates that have been directly validated against measurements of fat-free mass (FFM). The aim of the study was to evaluate the use of bioimpedance analysis for the estimation of FFM and percentage of body fat over the first 4 months of life in healthy infants born at term, and to compare these with estimations based on anthropometric measurements (weight and length) and with skinfolds. The present study was an observational study in seventy-seven infants. Body fat content of infants was assessed at birth, 6 weeks, 3 and 4·5 months of age by air displacement plethysmography, using the PEA POD body composition system. Bioimpedance analysis was performed at the same time and the data were used to develop and test prediction equations for FFM. The combination of weight+sex+length predicted FFM, with a bias of < 100 g and limits of agreement of 6–13 %. Before 3 months of age, bioimpedance analysis did not improve the prediction of FFM or body fat. At 3 and 4·5 months, the inclusion of impedance in prediction algorithms resulted in small improvements in prediction of FFM, reducing the bias to < 50 g and limits of agreement to < 9 %. Skinfold measurements performed poorly at all ages.

2021 ◽  
pp. 30-34
Author(s):  
O. A. Nikitinskaya ◽  
N. V. Toroptsova

Obesity is a risk factor for many chronic diseases. Several research methods are used to determine the amount of body fat, including the «gold standard» dual-energy X-ray absorptiometry (DXA). The bioelectrical impedance analysis (BIA) method is an alternative for assessing body composition that does not require special conditions for placement and examination, but the accuracy of its results depends on the hydration of the body.Objective. To compare the results of determining the percentage of body fat using multi-frequency (MF) BIA and DXA.Material and methods. The study included 20 volunteers (11 women and 9 men) aged 26 to 70 years without serious metabolic, cardiovascular or endocrine diseases. Two repeated measurements were performed using the MF-BIA method on the MS FIT device and the DXA method on the Lunar Prodigy Advance device.Results. There were no significant differences in the average percentage of body fat in repeated measurements by MF-BIA and DXA methods, and the intra-group correlation coefficients (r2 ) were 0.999 and 0.997, respectively. A high and significant correlation in percentage of body fat was found between the MF-BIA and DXA (r = 0.973, p < 0.001). The average difference between the results of these two methods was 0.1243%. Differences in percentage of body fat that exceeded two or more standard deviations were detected less than in 5% cases, so the data on body fat content estimated using DXA and BIA are consistent and can be considered almost equal.Conclusion. Our study has shown that the MS FIT body composition device using the MF-BIA method can be an alternative to DXA for assessing the percentage of body fat without introducing additional formulas to recalculate the data obtained.


2012 ◽  
Vol 109 (4) ◽  
pp. 639-647 ◽  
Author(s):  
Saijuddin Shaikh ◽  
Kerry J. Schulze ◽  
Anura Kurpad ◽  
Hasmot Ali ◽  
Abu Ahmed Shamim ◽  
...  

Equations for predicting body composition from bioelectrical impedance analysis (BIA) parameters are age-, sex- and population-specific. Currently there are no equations applicable to women of reproductive age in rural South Asia. Hence, we developed equations for estimating total body water (TBW), fat-free mass (FFM) and fat mass in rural Bangladeshi women using BIA, with 2H2O dilution as the criterion method. Women of reproductive age, participating in a community-based placebo-controlled trial of vitamin A or β-carotene supplementation, were enrolled at 19·7 (sd 9·3) weeks postpartum in a study to measure body composition by 2H2O dilution and impedance at 50 kHz using multi-frequency BIA (n 147), and resistance at 50 kHz using single-frequency BIA (n 82). TBW (kg) by 2H2O dilution was used to derive prediction equations for body composition from BIA measures. The prediction equation was applied to resistance measures obtained at 13 weeks postpartum in a larger population of postpartum women (n 1020). TBW, FFM and fat were 22·6 (sd 2·7), 30·9 (sd 3·7) and 10·2 (sd 3·8) kg by 2H2O dilution. Height2/impedance or height2/resistance and weight provided the best estimate of TBW, with adjusted R2 0·78 and 0·76, and with paired absolute differences in TBW of 0·02 (sd 1·33) and 0·00 (sd 1·28) kg, respectively, between BIA and 2H2O. In the larger sample, values for TBW, FFM and fat were 23·8, 32·5 and 10·3 kg, respectively. BIA can be an important tool for assessing body composition in women of reproductive age in rural South Asia where poor maternal nutrition is common.


Author(s):  
Roselya Mutiara Pratiwi ◽  
Ni Luh Putu Arum Puspitaning Ati

Backgound: Measurement of body fat percentage as estimates of obesity, which can be done with the method of measuring the bioelectrical impedance analysis (BIA) and the meter inches inelastic. Both of these methods can be used as a simple, safe and non-nvasive. Objective: To analyze the comparative measurement of obesity with the BIA and the meter inches inelastic. Method: The study was observational analytic with cross sectional design. Sample were taken and selected through simple ramdomize sampling method. Data obtained directly by measuring samples that met the inclusion criteria. Obesity screening data obtained by measuring the percentage of body fat using BIA method and meter inches inelastic. Results: Based on the calculationn, as many as 65 samples taken by proportional random sampling in each specialization the student of the Faculty of Public Health 2014 Airlangga University. The percentage of female students with obesity using the BIA was 29,2% and inelastic inch meter is 21,5%. The statistical test showed t test was 0,897 ( sig>0,05). Conclusion: There are differences in the measurement result mean obesity BIA metered inches inelastic screening tools and have a good validity in measuring obesity. Suggestion : For further research it is recommended to be more accurate in measuring using an inelastic inch meter, while when using BIA  it  should use altimeter measurement because it is needed for data input. 


2020 ◽  
Vol 11 (1) ◽  
pp. 26-30
Author(s):  
Maria Alessandra Gammone ◽  
Nicolantonio D’Orazio

AbstractBackgroundYoung ballet dancers are at risk of health issues associated with altered nutritional status and of relative energy deficiency in sport compared to the general population.AimTo evaluate the nutritional status and body composition in ballet dancers.Materials and methodsThe study group consisted of 40 young ballet dancers (mean age 19.97 years). Height and weight were measured and body mass index was calculated in all subjects (mean BMI value 19.79 kg/m2, SD: 2.051). Body composition was estimated using the bioelectrical impedance method.ResultsThe dancers’ fat-free mass was 47.33 kg (SD: 5.064) and, on the average, body fat represented the 15.92% (SD: 16.91) of their body weight.ConclusionsBallet dancers, who usually show significantly lower BMI values compared to the general population, also displayed body fat values under the suggested range. Some screening for altered nutritional status should be performed. In addition, education programs should be recommended in young ballet dancers, in order to inform about energy and nutrition requirements for health and training and to prevent malnutrition-related problems.


Author(s):  
Jasmina Pluncević Gligoroska ◽  
Sanja Mančevska ◽  
Niki Matveeva ◽  
Elizabeta Sivevska ◽  
Žarko Kostovski

The aim of the paper was to asses changes in body composition using bioelectrical impedance analysis (BIA) methodology in members of national karate team after teen week preparatory training period. The investigation was carried out on 11 male karate contestants, aged 18 to 28 years mean age (21.82± 3.58). The body composition was analyzed with In Body 720. The BIA outcomes were divided in 3 group of variables: body fluid and body composition variables, obesity diagnose variables and segmental analysis variables. All BIA variables were insignificantly higher at second measuring (p>005). Only Body mass index (BMI=24.1 vs 24.55); mineral (4.69 kg vs 4.77 kg) and osseous (3.85 kg vs 3.92 kg), were significantly higher (p≤0.05) after preparatory period. Body fat mass (BFM=10.34 kg vs 10.75 kg, p=0.329) and body fat percent (BF%= 12.73 vs13.22%) insignificantly increased after preparatory period. The skeletal mass has changed from 40.03kg to 40.55kg (p=0.276). Body composition analysis, changes in weight, BMI and body fluids are essential for weight categories dependent sports such as karate. Positive changes in body components and in body fluids suggest that the training process during the preparatory period did not show negative effects on body components and the hydration of the karate athletes.


1992 ◽  
Vol 72 (6) ◽  
pp. 2181-2187 ◽  
Author(s):  
C. S. Fulco ◽  
R. W. Hoyt ◽  
C. J. Baker-Fulco ◽  
J. Gonzalez ◽  
A. Cymerman

This study determined the feasibility of using bioelectrical impedance analysis (BIA) to assess body composition alterations associated with body weight (BW) loss at high altitude. The BIA method was also evaluated relative to anthropometric assessments. Height, BW, BIA, skinfold (SF, 6 sites), and circumference (CIR, 5 sites) measurements were obtained from 16 males (23–35 yr) before, during, and after 16 days of residence at 3,700–4,300 m. Hydrostatic weighings (HW) were performed pre- and postaltitude. Results of 13 previously derived prediction equations using various combinations of height, BW, age, BIA, SF, or CIR measurements as independent variables to predict fat-free mass (FFM), fat mass (FM), and percent body fat (%Fat) were compared with HW. Mean BW decreased from 84.74 to 78.84 kg (P less than 0.01). As determined by HW, FFM decreased by 2.44 kg (P less than 0.01), FM by 3.46 kg (P less than 0.01), and %Fat by 3.02% (P less than 0.01). The BIA and SF methods overestimated the loss in FFM and underestimated the losses in FM and %Fat (P less than 0.01). Only the equations utilizing the CIR measurements did not differ from HW values for changes in FFM, FM, and %Fat. It was concluded that the BIA and SF methods were not acceptable for assessing body composition changes at altitude.


2019 ◽  
Vol 149 (7) ◽  
pp. 1288-1293 ◽  
Author(s):  
Alissa Steinberg ◽  
Cedric Manlhiot ◽  
Ping Li ◽  
Emma Metivier ◽  
Paul B Pencharz ◽  
...  

ABSTRACT Background Body mass index measures excess weight for size, and does not differentiate between fat mass (FM) and fat-free mass (FFM). Bioelectrical impedance analysis (BIA) is most commonly used to assess FM and FFM as it is simple and inexpensive. Variables from BIA measurements are used in predictive equations to estimate FM and FFM. To date, these equations have not been validated for use in adolescents with severe obesity. Objectives In a cohort of adolescents with severe obesity (SO), a BMI ≥ 120% of the 95th percentile, this study aimed to 1) derive a BIA predictive equation data from air displacement plethysmography (ADP) measurements; 2) reassess the equation in a second validation cohort; and 3) compare the accuracy of existing body composition equations. Methods Adolescents with SO were assessed using ADP and BIA. FM values derived from ADP measurements from the first cohort (n = 27) were used to develop a BIA predictive equation (i.e., Hamilton). A second cohort (n = 65) was used to cross-validate the new and 9 existing BIA predictive equations. Results Ninety-two adolescents (15.8 ± 1.9 y; BMI: 46.1 ± 9.9 kg/m2) participated. Compared with measured FFM using ADP: 1) the Lazzer, Hamilton, Gray, and Kyle equations were without significant bias; 2) the Hamilton and Gray equations had the smallest absolute and relative differences; 3) the Kyle and Gray equations showed the strongest correlation; 4) the Hamilton equation most accurately predicted FFM within ± 5% of measured FFM; and 5) 8 out of 9 equations had similar root mean squared prediction error values (6.03–6.64 kg). Conclusion The Hamilton BIA equation developed in this study best predicted body composition values for groups of adolescents with severe obesity in a validation cohort.


Sign in / Sign up

Export Citation Format

Share Document