In vitrodetermination of dietary protein and amino acid digestibility for humans

2012 ◽  
Vol 108 (S2) ◽  
pp. S282-S287 ◽  
Author(s):  
Christine A. Butts ◽  
John A. Monro ◽  
Paul J. Moughan

The development, refinement and validation ofin vitrodigestibility assays for dietary protein and amino acids for single stomached mammals are reviewed. The general principles ofin vitrodigestibility assays and their limitations are discussed.In vitroprotein digestibility assays must be accurate, rapid, cheap, simple, robust, adaptable and relevant to the processes of digestion, absorption, and metabolism. Simplein vitromethods have the potential to give useful measures ofin vivoamino acid and protein digestibility for humans.In vitromethods, including the complex multi-component models of digestion simulating the various physical and chemical processes, require independent validation within vivodata from the target species or an acceptable animal model using the most appropriatein vivomeasure of digestibility. For protein sources devoid of anti-nutritional factors or plant fibre, true ileal digestibility is the recommendedin vivobaseline, while for plant proteins the recommendedin vivoassay is real ileal digestibility. More published comparative studies are required to adequately validatein vitrodigestibility assays.

1999 ◽  
Vol 50 (5) ◽  
pp. 871 ◽  
Author(s):  
Paul J. Moughan

The philosophy inherent in developing in vitro digestibility assays for dietary energy and protein is reviewed and an historical account is given of the development of such assays for the pig. General principles to be considered in the development of in vitro digestibility assays are discussed, as are limitations of the in vitro approach. The importance of choosing the most appropriate in vivo measures of digestibility for the evaluation of in vitro assays is stressed. For protein sources that do not contain anti-nutritional factors or plant fibre, ‘true’ ileal digestibility should be the in vivo baseline, while plant proteins should be tested against ‘real’ ileal digestibility. There is a dearth of adequately conducted validation studies for in vitro digestibility assays. It appears that the 3-step (pepsin, pancreatin, Viscozyme) closed in vitro system to allow prediction of organic matter and gross energy digestibility in the pig has particular promise for practical feed evaluation. Similarly based protein digestibility assays may require further development before they can be applied with confidence.


1987 ◽  
Vol 52 (9) ◽  
pp. 2317-2325 ◽  
Author(s):  
Jan Hlaváček ◽  
Jan Pospíšek ◽  
Jiřina Slaninová ◽  
Walter Y. Chan ◽  
Victor J. Hruby

[8-Neopentylglycine]oxytocin (II) and [8-cycloleucine]oxytocin (III) were prepared by a combination of solid-phase synthesis and fragment condensation. Both analogues exhibited decreased uterotonic potency in vitro, each being about 15-30% that of oxytocin. Analogue II also displayed similarly decreased uterotonic potency in vivo and galactogogic potency. On the other hand, analogue III exhibited almost the same potency as oxytocin in the uterotonic assay in vivo and in the galactogogic assay.


1995 ◽  
Vol 60 (7) ◽  
pp. 1229-1235 ◽  
Author(s):  
Ivana Zoulíková ◽  
Ivan Svoboda ◽  
Jiří Velek ◽  
Václav Kašička ◽  
Jiřina Slaninová ◽  
...  

The vasoactive intestinal (poly)peptide (VIP) is a linear peptide containing 28 amino acid residues, whose primary structure indicates a low metabolic stability. The following VIP fragments, as potential metabolites, and their analogues were prepared by synthesis on a solid: [His(Dnp)1]VIP(1-10), VIP(11-14), [D-Arg12]VIP(11-14), [Lys(Pac)15,21,Arg20]VIP(15-22), and VIP(23-28). After purification, the peptides were characterized by amino acid analysis, mass spectrometry, RP HPLC, and capillary zone electrophoresis. In some tests, detailed examination of the biological activity of the substances in vivo and in vitro gave evidence of a low, residual activity of some fragments, viz. a depressoric activity in vivo for [His(Dnp)1]VIP(1-10) and a stimulating activity for the release of α-amylase in vitro and in vivo for [Lys(Pac)15,21,Arg20]VIP(15-22) and VIP(23-28).


Author(s):  
Jorn Trommelen ◽  
Andrew M. Holwerda ◽  
Philippe J. M. Pinckaers ◽  
Luc J. C. van Loon

All human tissues are in a constant state of remodelling, regulated by the balance between tissue protein synthesis and breakdown rates. It has been well-established that protein ingestion stimulates skeletal muscle and whole-body protein synthesis. Stable isotope-labelled amino acid methodologies are commonly applied to assess the various aspects of protein metabolism in vivo in human subjects. However, to achieve a more comprehensive assessment of post-prandial protein handling in vivo in human subjects, intravenous stable isotope-labelled amino acid infusions can be combined with the ingestion of intrinsically labelled protein and the collection of blood and muscle tissue samples. The combined application of ingesting intrinsically labelled protein with continuous intravenous stable isotope-labelled amino acid infusion allows the simultaneous assessment of protein digestion and amino acid absorption kinetics (e.g. release of dietary protein-derived amino acids into the circulation), whole-body protein metabolism (whole-body protein synthesis, breakdown and oxidation rates and net protein balance) and skeletal muscle metabolism (muscle protein fractional synthesis rates and dietary protein-derived amino acid incorporation into muscle protein). The purpose of this review is to provide an overview of the various aspects of post-prandial protein handling and metabolism with a focus on insights obtained from studies that have applied intrinsically labelled protein under a variety of conditions in different populations.


2004 ◽  
Vol 76 (6) ◽  
pp. 519-527 ◽  
Author(s):  
T FUKAMI ◽  
M NAKAJIMA ◽  
R YOSHIDA ◽  
Y TSUCHIYA ◽  
Y FUJIKI ◽  
...  

1984 ◽  
Vol 247 (5) ◽  
pp. E639-E644
Author(s):  
C. M. Cameron ◽  
J. L. Kostyo ◽  
J. A. Rillema ◽  
S. E. Gennick

The biological activity profile of reduced and S-carboxymethylated human growth hormone (RCM-hGH) was determined to establish its suitability for study of the diabetogenic property of hGH. RCM-hGH was found to have greatly attenuated in vivo growth-promoting activity in the 9-day weight-gain test in hypophysectomized rats (approximately 1%) and to have a similar low order of in vitro activity in stimulating amino acid incorporation into the protein of the isolated rat diaphragm. RCM-hGH also only had approximately 1% of the in vitro insulin-like activity of the native hormone on isolated adipose tissue from hypophysectomized rats. In contrast, RCM-hGH retained substantial in vivo diabetogenic activity in the ob/ob mouse, appearing to have approximately 50% of the activity of the native hormone. RCM-hGH was also found to retain significant, although attenuated (25%), in vitro lactogenic activity when tested for the ability to stimulate amino acid incorporation into a casein-rich protein fraction in mouse mammary gland explants. Because RCM-hGH exhibits a high degree of diabetogenic activity, although lacking significant anabolic or insulin-like activities, it will be useful as a "monovalent" probe for the study of the molecular mechanism of the diabetogenic action of GH.


1984 ◽  
Vol 4 (12) ◽  
pp. 1009-1015 ◽  
Author(s):  
J. P. Bali ◽  
H. Mattras ◽  
A. Previero ◽  
M. A. Coletti-Previero

Rat blood was shown to contain an aminopeptidase which rapidly hydrolyses short peptides containing an aromatic amino acid as N-terminal residue. Using tetragastrin (Trp-Met-Asp-PheNH 2) as substrate, we showed that some amino acid hydroxamates inhibit rat aminopeptidase activity ‘in vitro’ in the following order: HTrpNHOH > HPheNHOH ≫ HAIaNHOH. The same hydroxamates markedly enhanced the biological activity of tetragastrin ‘in vivo’. The amplification of the secretory effect, correlated with the amount of the hydroxamate used, strongly suggests that these compounds can stabilize a number of active peptides in vivo by inhibiting their proteolytic degradation.


2006 ◽  
Vol 398 (3) ◽  
pp. 531-538 ◽  
Author(s):  
Yukiko Mizutani ◽  
Akio Kihara ◽  
Yasuyuki Igarashi

The LASS (longevity assurance homologue) family members are highly conserved from yeasts to mammals. Five mouse and human LASS family members, namely LASS1, LASS2, LASS4, LASS5 and LASS6, have been identified and characterized. In the present study we cloned two transcriptional variants of hitherto-uncharacterized mouse LASS3 cDNA, which encode a 384-amino-acid protein (LASS3) and a 419-amino-acid protein (LASS3-long). In vivo, [3H]dihydrosphingosine labelling and electrospray-ionization MS revealed that overproduction of either LASS3 isoform results in increases in several ceramide species, with some preference toward those having middle- to long-chain-fatty acyl-CoAs. A similar substrate preference was observed in an in vitro (dihydro)ceramide synthase assay. These results indicate that LASS3 possesses (dihydro)ceramide synthesis activity with relatively broad substrate specificity. We also found that, except for a weak display in skin, LASS3 mRNA expression is limited almost solely to testis, implying that LASS3 plays an important role in this gland.


Sign in / Sign up

Export Citation Format

Share Document