scholarly journals Biotype status and genetic polymorphism of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) in Greece: mitochondrial DNA and microsatellites

2007 ◽  
Vol 97 (1) ◽  
pp. 29-40 ◽  
Author(s):  
A. Tsagkarakou ◽  
C.S. Tsigenopoulos ◽  
K. Gorman ◽  
J. Lagnel ◽  
I.D. Bedford

AbstractThe genetic polymorphism and the biotype identity of the tobacco whitefly Bemisia tabaci (Gennadius) have been studied in population samples taken from different localities within Greece from cultivated plants growing in greenhouses or in open environments and from non-cultivated plants. Two different approaches were used: sequencing of the mitochondrial cytochrome oxidase I (mtCOI) gene and genotyping using microsatellite markers. Analyses of the mtCOI sequences revealed a high homogeneity between the Greek samples which clustered together with Q biotype samples that had been collected from other countries. When genetic polymorphism was examined using six microsatellite markers, the Greek samples, which were all characterized as Q biotype were significantly differentiated from each other and clustered into at least two distinct genetic populations. Moreover, based on the fixed differences revealed by the mtCOI comparison of known B. tabaci biotype sequences, two diagnostic tests for discriminating between Q and B and non-Q/non-B biotypes were developed. Implementation of these diagnostic tools allowed an absence of the B biotype and presence of the Q biotype in the Greek samples to be determined.

2010 ◽  
Vol 101 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Q. Rao ◽  
C. Luo ◽  
H. Zhang ◽  
X. Guo ◽  
G.J. Devine

AbstractThe tobacco whitefly, Bemisia tabaci (Gennadius), causes severe crop losses in many agricultural systems. The worst of these losses are often associated with the invasion and establishment of specific whitefly biotypes. In a comprehensive survey of biotypes present in central China between 2005 and 2007, we obtained 191 samples of B. tabaci from 19 districts in Hubei province and its surrounds. Biotypes were identified by RAPD-PCR and by sequencing the mitochondrial cytochrome oxidase I gene (mtCO1). We determined that these central Chinese haplotypes included the world's two most invasive B. tabaci biotypes (B and Q) and two indigenous biotypes (ZHJ1 and ZHJ3). The B biotype shared >99.7% identity with other Chinese B biotypes and the Q biotype shared >99.5% of its identity with Q samples from the Mediterranean, USA, Africa and East Asia. By 2007, the Q biotype was dominant over much of Hubei province and appeared to be supplanting all other biotypes, although both the invasive and indigenous biotypes existed in sympatry in some regions. The invasion and rapid establishment of the Q biotype in China mirrors events elsewhere in the world, and we suggest that this is a consequence of its reproductive isolation, its polyphagous nature and its broad-spectrum resistance to insecticides. Its dominance has severe implications for the sustainability of some insecticide groups and for the production of a number of crops.


2005 ◽  
Vol 95 (6) ◽  
pp. 605-613 ◽  
Author(s):  
V. Khasdan ◽  
I. Levin ◽  
A. Rosner ◽  
S. Morin ◽  
S. Kontsedalov ◽  
...  

AbstractThe two most widespread biotypes of Bemisia tabaci (Gennadius) in southern Europe and the Middle East are referred to as the B and Q-type, which are morphologically indistinguishable. In this study various DNA markers have been developed, applied and compared for studying genetic diversity and distribution of the two biotypes. For developing sequence characterized amplified regions (SCAR) and cleaved amplified polymorphic sequences (CAPS) techniques, single random amplified polymorphic DNA (RAPD) fragments of B and Q biotypes, respectively, were used. The CAPS were investigated on the basis of nuclear sodium channel and the mitochondrial cytochrome oxidase I genes (mtCOI) sequences. In general, complete agreement was found between the different markers used. Analysis of field samples collected in Israel for several years, using these markers, indicated that the percentage of the Q biotype tends to increase in field populations as time progresses. This may be attributed to the resistance of the Q biotype to neonicotinoids and pyriproxyfen and the susceptibility of the B biotype to these insecticides.


2011 ◽  
Vol 30 (2) ◽  
pp. 379-390 ◽  
Author(s):  
Haidi Yin ◽  
Fengming Yan ◽  
Jianguo Ji ◽  
Yinxin Li ◽  
Rongjiang Wang ◽  
...  

2016 ◽  
Vol 51 (5) ◽  
pp. 555-562 ◽  
Author(s):  
Paulo Roberto Queiroz ◽  
Erica Soares Martins ◽  
Nazaré Klautau ◽  
Luzia Lima ◽  
Lilian Praça ◽  
...  

Abstract: The objective of this work was to develop sequence-characterized amplified region (Scar) markers to identify the B, Q, and native Brazilian biotypes of the sweet potato whitefly [Bemisia tabaci (Hemiptera: Aleyrodidae)]. Random amplified polymorphic DNA (RAPD) amplification products, exclusive to the B and Brazilian biotypes, were selected after the analysis of 12,000 samples, in order to design a specific Scar primer set. The BT-B1 and BT-B3 Scar markers, used to detect the B biotype, produced PCR fragments of 850 and 582 bp, respectively. The BT-BR1 Scar marker, used to identify the Brazilian biotype, produced a PCR fragment of 700 bp. The Scar markers were tested against the Q biotype, and a flowchart was proposed to indicate the decision steps to use these primers, in order to correctly discriminate the biotypes. This procedure allowed to identify the biotypes that occur in field samples, such as the B biotype. The used set of primers allowed to discriminate the B, Q, and native Brazilian biotypes of B. tabaci. These primers can be successfully used to identify the B biotype of B. tabaci from field samples, showing only one specific biotype present in all cultures.


2000 ◽  
Vol 23 (4) ◽  
pp. 781-785 ◽  
Author(s):  
L.H.C. Lima ◽  
D. Návia ◽  
P.W. Inglis ◽  
M.R.V. de Oliveira

In 1991, the poinsettia strain, silverleaf whitefly or B biotype of Bemisia tabaci was detected in Brazil. This variant is a far more serious agricultural pest than the previously prevalent non-B (BR) biotype. The correct identification of B. tabaci is problematic since it is highly polymorphic with extreme plasticity in key morphological characters that vary according to the host. RAPD-PCR was used to survey the B biotype and other biotypes of B. tabaci in Brazil. Whiteflies were collected from cultivated plants and weeds from 57 different localities and on 27 distinct crops. RAPD analyses using two selected 10-mer primers reliably identified the BR biotype and the B biotype of B. tabaci and also differentiated other whitefly species. The presence of the B biotype was confirmed in 20 Brazilian states. The BR and B biotypes of B. tabaci were found to coexist in the whitefly populations of three different localities: Jaboticabal, SP; Rondonópolis and Cuiabá, MT, and Goiânia, GO.


2010 ◽  
Vol 100 (5) ◽  
pp. 581-590 ◽  
Author(s):  
M. Elbaz ◽  
N. Lahav ◽  
S. Morin

AbstractThe degree of reproductive isolation between the B and Q biotypes of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is currently not clear. Laboratory experiments have shown that the two biotypes are capable of producing viable F1 hybrids but that these females are sterile as their F2 generation failed to develop, indicating, most likely, a post-zygotic reproductive barrier. Here, we confirm, by molecular and ecological tools, that the B and Q biotypes of Israel are genetically isolated and provide two independent lines of evidence that support the existence of a pre-zygotic reproductive barrier between them. Firstly, monitoring of mating behaviors in homogeneous and heterogeneous couples indicated no copulation events in heterogeneous couples compared to ∼50% in homogeneous B and Q couples. Secondly, we could not detect the presence of sperm in the spermathecae of females from heterogeneous couples, compared to 50% detection in intra-B biotype crosses and 15% detection in intra-Q biotype crosses. The existence of pre-zygotic reproductive barriers in Israeli B and Q colonies may indicate a reinforcement process in which mating discrimination is strengthened between sympatric taxa that were formerly allopatric, to avoid maladaptive hybridization. As the two biotypes continued to perform all courtship stages prior to copulation, we also conducted mixed cultures experiments in order to test the reproductive consequences of inter-biotype courtship attempts. In mixed cultures, a significant reduction in female fecundity was observed for the Q biotype but not for the B biotype, suggesting an asymmetric reproductive interference effect in favour of the B biotype. The long-term outcome of this effect is yet to be determined since additional environmental forces may reduce the probability of demographic displacement of one biotype by the other in overlapping niches.


2007 ◽  
Vol 97 (4) ◽  
pp. 407-413 ◽  
Author(s):  
E. Chiel ◽  
Y. Gottlieb ◽  
E. Zchori-Fein ◽  
N. Mozes-Daube ◽  
N. Katzir ◽  
...  

AbstractThe sweet potato whitefly, Bemisia tabaci, harbors Portiera aleyrodidarum, an obligatory symbiotic bacterium, as well as several secondary symbionts including Rickettsia, Hamiltonella, Wolbachia, Arsenophonus, Cardinium and Fritschea, the function of which is unknown. Bemisia tabaci is a species complex composed of numerous biotypes, which may differ from each other both genetically and biologically. Only the B and Q biotypes have been reported from Israel. Secondary symbiont infection frequencies of Israeli laboratory and field populations of B. tabaci from various host plants were determined by PCR, in order to test for correlation between bacterial composition to biotype and host plant. Hamiltonella was detected only in populations of the B biotype, while Wolbachia and Arsenophonus were found only in the Q biotype (33% and 87% infection, respectively). Rickettsia was abundant in both biotypes. Cardinium and Fritschea were not found in any of the populations. No differences in secondary symbionts were found among host plants within the B biotype; but within the Q biotype, all whiteflies collected from sage harboured both Rickettsia and Arsenophonus, an infection frequency which was significantly higher than those found in association with all other host plants. The association found between whitefly biotypes and secondary symbionts suggests a possible contribution of these bacteria to host characteristics such as insecticide resistance, host range, virus transmission and speciation.


2010 ◽  
Vol 84 (18) ◽  
pp. 9310-9317 ◽  
Author(s):  
Yuval Gottlieb ◽  
Einat Zchori-Fein ◽  
Netta Mozes-Daube ◽  
Svetlana Kontsedalov ◽  
Marisa Skaljac ◽  
...  

ABSTRACT Tomato yellow leaf curl virus (TYLCV) (Geminiviridae: Begomovirus) is exclusively vectored by the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). TYLCV transmission depends upon a 63-kDa GroEL protein produced by the vector's endosymbiotic bacteria. B. tabaci is a species complex comprising several genetically distinct biotypes that show different secondary-symbiont fauna. In Israel, the B biotype harbors Hamiltonella, and the Q biotype harbors Wolbachia and Arsenophonus. Both biotypes harbor Rickettsia and Portiera (the obligatory primary symbionts). The aim of this study was to determine which B. tabaci symbionts are involved in TYLCV transmission using B. tabaci populations collected in Israel. Virus transmission assays by B. tabaci showed that the B biotype efficiently transmits the virus, while the Q biotype scarcely transmits it. Yeast two-hybrid and protein pulldown assays showed that while the GroEL protein produced by Hamiltonella interacts with TYLCV coat protein, GroEL produced by Rickettsia and Portiera does not. To assess the role of Wolbachia and Arsenophonus GroEL proteins (GroELs), we used an immune capture PCR (IC-PCR) assay, employing in vivo- and in vitro-synthesized GroEL proteins from all symbionts and whitefly artificial feeding through membranes. Interaction between GroEL and TYLCV was found to occur in the B biotype, but not in the Q biotype. This assay further showed that release of virions protected by GroEL occurs adjacent to the primary salivary glands. Taken together, the GroEL protein produced by Hamiltonella (present in the B biotype, but absent in the Q biotype) facilitates TYLCV transmission. The other symbionts from both biotypes do not seem to be involved in transmission of this virus.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Shunxiao Liu ◽  
Hao Yu ◽  
Vlasenko V.A

摘要Biological invasion refers to the process of invading into another new environment through natural or man-made means from the original place of existence,which includes several stages of introduction, colonization, incubation, diffusion and outbreak.Bemisia tabaci is a worldwide important agricultural pest composed of multiple biotypes. Studies have confirmed that the  B biotype Bemisia tabaci that invaded China has been genetically differentiated, and the Q biotype Bemisia tabaci has replaced the B biotype in most areas of China. Bemisia tabaci has become the dominant biotype in the field.


Sign in / Sign up

Export Citation Format

Share Document