Morphological and molecular characterization of Castniidae (Lepidoptera) associated to sugarcane in Colombia

Author(s):  
Viviana Marcela Aya ◽  
Alejandro Pabón ◽  
Jorge M. González ◽  
Germán Vargas

Abstract The giant sugarcane borer, Telchin licus, has been reported as an economically important sugarcane pest in Colombia; however, its taxonomic status has been scarcely investigated and previous reports offer an ambiguous characterization of both the immature and adult stages. The objective of this work is to identify Telchin species affecting sugarcane and alternative hosts in different departments of the country by integrating molecular analysis and conventional morphology. To date, T. licus has been found in the departments of Caquetá, Casanare, and Meta, while T. atymnius has been found in Antioquia, Caldas, Nariño, and Valle del Cauca. Sugarcane, Musaceae, and Heliconiaceae have been found to be hosts to both species. Additionally, the species T. cacica has also been registered in the department of Nariño, affecting heliconias and plantains. Genetic variation within the species allowed differentiation at the molecular level of subspecies of T. licus and T. atymnius, confirming that the subspecies present in Colombia are T. licus magdalena, T. atymnius humboldti, and T. atymnius atymnius. The haplotype diversity of populations is closely related to their geographical distribution, indicating low gene flow between populations and possible speciation inside the country. Analysis of genetic variance showed significant differences among and within T. atymnius populations, which may suggest a high genetic structure along the regions where it is found and the possible presence of additional subspecies to those previously reported. To understand the geographical and environmental conditions that determine the pest's distribution in Colombia, this information needs to be complemented with ecological considerations of possible geographical isolation and association of alternative hosts.

Zootaxa ◽  
2019 ◽  
Vol 4619 (2) ◽  
pp. 391-400
Author(s):  
JANS MORFFE ◽  
NAYLA GARCÍA ◽  
ANDREW K. DAVIS ◽  
KOICHI HASEGAWA ◽  
RAMON A. CARRENO

The females of Xyo pseudohystrix Travassos & Kloss, 1958 (Nematoda: Oxyuridomorpha: Hystrignathidae) are redescribed and illustrated with the aid of SEM. New features of the cephalic end, arrangement of the cervical spines and genital tract were observed. The taxonomic status of the species is discussed on the basis of discrepancies with the generic diagnosis of Xyo Cobb, 1898. Due to the lack of proper information on the genus the status of incertae sedis is proposed. The identity of the males was confirmed by molecular studies and the morphology of the specimens previously assigned by Christie (1932) as males of Hystrignathus rigidus Leidy, 1858 correspond to the current species. New locality records are given for the states of Georgia and Ohio, USA. The phylogenetic position of the species is inferred on the basis of the D2-D3 segment of the LSU rDNA and SSU rDNA. 


Genetics ◽  
1998 ◽  
Vol 150 (2) ◽  
pp. 945-956 ◽  
Author(s):  
Hong-Wen Deng

Abstract Deng and Lynch recently proposed estimating the rate and effects of deleterious genomic mutations from changes in the mean and genetic variance of fitness upon selfing/outcrossing in outcrossing/highly selfing populations. The utility of our original estimation approach is limited in outcrossing populations, since selfing may not always be feasible. Here we extend the approach to any form of inbreeding in outcrossing populations. By simulations, the statistical properties of the estimation under a common form of inbreeding (sib mating) are investigated under a range of biologically plausible situations. The efficiencies of different degrees of inbreeding and two different experimental designs of estimation are also investigated. We found that estimation using the total genetic variation in the inbred generation is generally more efficient than employing the genetic variation among the mean of inbred families, and that higher degree of inbreeding employed in experiments yields higher power for estimation. The simulation results of the magnitude and direction of estimation bias under variable or epistatic mutation effects may provide a basis for accurate inferences of deleterious mutations. Simulations accounting for environmental variance of fitness suggest that, under full-sib mating, our extension can achieve reasonably well an estimation with sample sizes of only ∼2000-3000.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongru Su ◽  
Eri Onoda ◽  
Hitoshi Tai ◽  
Hiromi Fujita ◽  
Shigetoshi Sakabe ◽  
...  

AbstractEhrlichia species are obligatory intracellular bacteria transmitted by arthropods, and some of these species cause febrile diseases in humans and livestock. Genome sequencing has only been performed with cultured Ehrlichia species, and the taxonomic status of such ehrlichiae has been estimated by core genome-based phylogenetic analysis. However, many uncultured ehrlichiae exist in nature throughout the world, including Japan. This study aimed to conduct a molecular-based taxonomic and ecological characterization of uncultured Ehrlichia species or genotypes from ticks in Japan. We first surveyed 616 Haemaphysalis ticks by p28-PCR screening and analyzed five additional housekeeping genes (16S rRNA, groEL, gltA, ftsZ, and rpoB) from 11 p28-PCR-positive ticks. Phylogenetic analyses of the respective genes showed similar trees but with some differences. Furthermore, we found that V1 in the V1–V9 regions of Ehrlichia 16S rRNA exhibited the greatest variability. From an ecological viewpoint, the amounts of ehrlichiae in a single tick were found to equal approx. 6.3E+3 to 2.0E+6. Subsequently, core-partial-RGGFR-based phylogenetic analysis based on the concatenated sequences of the five housekeeping loci revealed six Ehrlichia genotypes, which included potentially new Ehrlichia species. Thus, our approach contributes to the taxonomic profiling and ecological quantitative analysis of uncultured or unidentified Ehrlichia species or genotypes worldwide.


DYNA ◽  
2019 ◽  
Vol 86 (210) ◽  
pp. 98-107
Author(s):  
Luz Marina Flórez Pardo ◽  
Andrea González Córdoba ◽  
Jorge Enrique López Galán

In this research, the types of hemicellulose that predominate in the leaves and tops of the three most cultivated varieties (CC 8475, CC 8592, V 7151) of sugarcane (Saccharum officinarum L.) in Valle del Cauca, Colombia were determined. Hemicellulose analyses were performed after delignification with sodium chlorite and extraction with 18% NaOH and 24% KOH containing 0.26 M NaBH4. The main components of hemicellulose were identified via FTIR and NMR spectroscopy, and monomeric sugars were identified via HPLC. Hemicellulose A composed of arabinoxylans, glucomannans and arabinogalactactans and hemicellulose B primarily composed of arabinoxylans were extracted. The hemicelluloses of the Colombian varieties were more stable against heat than those of the Venezuelan variety. The results of this project allowed discovery of the potential use of agricultural sugarcane residues for bioethanol production because they have a holocellulose content of more than 60%.


Sign in / Sign up

Export Citation Format

Share Document