OXIDATIVE ENZYME RESPONSES OF SIX CITRUS ROOTSTOCKS INFECTED WITH PHOMA TRACHEIPHILA (PETRI) KANTSCHAVELI AND GIKASHVILI

2012 ◽  
Vol 48 (4) ◽  
pp. 563-572 ◽  
Author(s):  
AYDIN UZUN ◽  
UBEYIT SEDAY ◽  
ERCAN CANIHOS ◽  
OSMAN GULSEN

SUMMARYCitrus trees are often exposed to severe infectious diseases. Mal secco caused by Phoma tracheiphila (Petri) Kantschaveli and Gikashvili is one of the most destructive fungal diseases of lemons (Citrus limon Burm. F.). In the present study, antioxidant enzyme activity in different mal secco-resistant and susceptible citrus rootstocks including Cleopatra mandarin (C. reshni Tan.), sour orange (C. aurantium L.), rough lemon (C. jambhiri Lush.), Volkameriana (C. volkameriana Tan. and Pasq.), Carrizo citrange (Poncirus trifoliata L. Raf. X C. sinensis L. Osbeck) and trifoliate orange (P. trifoliata) was investigated. Possible differences in constitutive levels of these antioxidant enzymes and correlations between enzyme levels and mal secco caused by P. tracheiphila were examined. Among the rootstocks, Cleopatra mandarin was found to be resistant to mal secco, whereas rough lemon, sour orange and trifoliate orange were highly susceptible. Total peroxidase (TPX; EC: 1.11.1.7) activity increased in all infected rootstocks. Ascorbate peroxidase (APX; EC: 1.11.1.11) activity increased in most of the rootstocks and no correlation was found between catalase (CAT; EC: 1.11.1.6) activity and mal secco resistance. This study indicates that overall TPX activity is upregulated and APX activity is up- and down-regulated depending on the type of rootstock in response to P. tracheiphila infection.

Author(s):  
Mehmet Yaman ◽  
Hasan Pınar ◽  
Ubeyit Seday ◽  
Duygu Altınöz ◽  
Aydın Uzun ◽  
...  

Just because of geographical spread, citrus species generally grow in places sensitive to salinity. Testing methods have a significant role in breeding and cultivar development programs. This study was conducted to investigate in vitro salt response of Cleopatra mandarin (Citrus reshni Tan.), sour orange (Citrus aurantium L.), rough lemon (Citrus jambhiri Lush.), Volkamer lemon (Citrus volkameriana Tan & Pasq.), Carrizo citrange (Poncirus trifoliata L. Raf. X Citrus sinensis L. Osbeck) and trifoliate orange (Poncirus trifoliata Raf.) rootstocks at different NaCl concentrations. Seeds were germinated in MS medium with 0, 45, 90 and 135 mM NaCl concentrations. In general, the greatest germination rates in all salt concentrations in Volkamer lemon and sour orange rootstocks and the lowest values were observed in rough lemon and trifoliate orange rootstocks. Present findings revealed that in vitro conditions could reliably be used in salt tolerance tests of citrus rootstocks.


1992 ◽  
Vol 32 (2) ◽  
pp. 205
Author(s):  
RA Sarooshi ◽  
P Broadbent

The yield, growth, fruit quality, and graft compatibility of 2 lemon cultivars Eureka and Lisbon [Citrus limon (L.) Bum. f.], budded onto several new rootstocks, were studied in replant ground.Promising rootstocks for Eureka lemon were 2 new hybrids bred at Gosford, New South Wales, 3798 (Scarlet mandarin x Poncirus trifoliata) and 4017 (Smooth Seville x P. trifoliata), and also Benton citrange and Nelspruit hybrid 639. Trees on the sour orange group of rootstocks including Xingshan, Dai Dai and Baggan yielded 44-63% less than trees on rough lemon rootstocks; but their fruit quality, as evidenced by juice per cent, OBrix, and citric acid (kg/t), was better. The performance of Lisbon lemon was tested on 10 selections of F'. trifoliata, and although trees on Flying Dragon were smaller and yielded about 50% less than on Swingle, Christiansen, Large Flower, and selection 22, results were not significantly (P<0.05) different.


1985 ◽  
Vol 63 (10) ◽  
pp. 1730-1735 ◽  
Author(s):  
Kenneth F. Baker ◽  
Lily H. Davis ◽  
Stephen Wilhelm ◽  
William C. Snyder

A form of Phoma tracheiphila (Petri) Kant. & Gik., newly designated as f. sp. chrysanthemi Baker et al., massively invades the phloem and xylem and to a lesser extent the cortex and pith of chrysanthemum plants but causes only slight injury in the first season. However, infected plants either produce weak shoots the following year or commonly fail to resume growth. Injury appears to result from depletion of photosynthates and nutrients rather than from vascular plugging or toxins. Infection occurs through intact roots or through wounds of roots or stems, and the pathogen spreads to the top of 120-cm stems in 3 months. Infection occurs readily from 10–29.4 but most abundantly at 10–21° C. Mycelial development in the stems is retarded at 10 and is optimal at 21° C. This Phoma decline disease was prevalent in commercial and home chrysanthemum plantings in California in 1948–1956, but it has since been controlled by the annual planting of healthy cuttings in fumigated soil, as practiced for control of verticillium wilt. In home gardens the disease may cause severe losses if plants are grown as perennials, but if healthy cuttings are planted annually, the disease will be minimal even in plants grown in infested soil. The pathogen is indistinguishable morphologically from Phoma tracheiphila f. sp. tracheiphila Baker et al., cause of "mal secco" of citrus, but will not infect sour orange or rough lemon plants.


HortScience ◽  
1994 ◽  
Vol 29 (7) ◽  
pp. 812-813 ◽  
Author(s):  
Jude W. Grosser ◽  
Frederick G. Gmitter ◽  
J.L. Chandler ◽  
Eliezer S. Louzada

Protoplasm culture following polyethylene glycol-induced fusion resulted in the regeneration of tetraploid somatic hybrid plants from the following attempted parental combinations: Cleopatra mandarin (Citrus reticulata Blanco) + Argentine trifoliate orange [Poncirus trifoliata (L.) Raf.]; `Succari' sweet orange [C. sinensis (L.) Osb.] + Argentine trifoliate orange; sour orange (C. aurantium L.) + Flying Dragon trifoliate orange (P. trifolita); sour orange + Rangpur (C. limonia Osb.); and Milam lemon (purported sexual hybrid of C. jambhiri Lush × C. sinensis) + Sun Chu Sha mandarin (C. reticulate Blanco). Protoplasm isolation, fusion, and culture were conducted according to previously published methods. Regenerated plants were classified according to leaf morphology, chromosome number, and peroxidase, phosphoglucomutase, and phosphoglucose isomerase leaf isozyme profiles. All of the somatic hybrid plants were tetraploid, as expected (2n = 4x = 36), and all five selections have been propagated and entered into commercial citrus rootstock trials.


1994 ◽  
Vol 119 (2) ◽  
pp. 185-194 ◽  
Author(s):  
Luiz A.B.C. Vasconcellos ◽  
William S. Castle

Wood samples were taken from healthy and blighted citrus trees on several rootstocks to describe and compare the xylem anatomy of the healthy trees and to determine if blight altered xylogenesis. Horizontal trunk xylem cores, 6 cm long, were extracted from blighted 18-year-old commercial grapefruit (Citrus paradisi Macf.) trees on rough lemon (RL) (C. jambhiri Lush.), Cleopatra mandarin (CM) (C. reshni Hort. ex Tan.), and Carrizo citrange (CC) [C. sinensis (L). Osb. × Poncirus trifoliata (L.) Raf] and from healthy trees on those rootstocks and sour orange (SO) (C. aurantium L.). Cores were taken from the eastern and western sides of the scion and rootstock of each tree. The cores were divided into 2-cm pieces and cross-sections were prepared for analysis of vessel element (VE) number and diameter in 0.5-cm increments. A sample-size study showed that tree side was not a significant source of variation and that 10 replications were sufficient to detect differences of ≈12% from the overall mean. Among the healthy trees, VE densities and diameters were similar for the trees on CC or RL and larger than those for trees on SO or CM. VEs were generally smaller and at lower densities in the scion than the rootstock. Few VE occlusions were observed in the healthy trees. In the blighted trees, to a depth of 1 cm, VE density increased and diameter decreased compared to the healthy trees. The largest change occurred in the trees on RL and in the rootstock vs. scion trunk part. The frequency of VE amorphous plugs in blighted trees ranged from 1% to 30%. Similar changes in xylem anatomy were not found in trees with citrus tristeza virus or soilborne pests. Trunk water uptake and dye movement patterns in blighted trees were typical for trees with xylem dysfunction.


1969 ◽  
Vol 60 (4) ◽  
pp. 485-490
Author(s):  
C. C. Weir

The effect of six commercial citrus rootstocks on the growth and yield of Valencia orange, Marsh seedless grapefruit, and Ortanique trees was studied in a rootstock experiment initiated in Jamaica in 1965. Results of these investigations revealed that under the soil and environmental conditions of this experiment, rough lemon and Rangpur lime rootstocks were the most vigorous of the six stocks studied; Cleopatra mandarin was the next most vigorous, while the trifoliate orange was decidedly the least vigorous of the stocks. The widely used sour orange stock was a relatively slow growing stock, and its vigour was about equal to the Troyer citrange rootstock. Yield data taken over the 3-year period 1969 to 1972 showed that the sour orange rootstock produced yields of Valencia orange, Marsh seedless grapefruit, and Ortaniques as good as the more vigorous rough lemon and Rangpur lime rootstocks, and better than the other three stocks, viz., Cleopatra mandarin, Troyer citrange, and trifoliate orange.


2004 ◽  
Vol 61 (2) ◽  
pp. 151-155 ◽  
Author(s):  
Neusa Maria Colauto Stenzel ◽  
Carmen Silvia Vieira Janeiro Neves

The 'Tahiti' lime (Citrus latifolia Tanaka) is an important commercial citrus cultivar in Brazil. 'Rangpur' lime has being used as its main rootstock, but it is susceptible to root rot caused by Phytophthora, reducing tree longevity. An experiment was set up in a randomized block design, with three trees per plot of each rootstock and four replicates, and run for 12 years, aiming to compare the performance of 'IAC-5 Tahiti' lime, budded on 'Rangpur' lime (Citrus limonia Osb.); 'C-13' citrange (Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.); 'African' rough lemon (Citrus jambhiri Lush.); 'Volkamer' lemon (Citrus volkameriana Ten. & Pasq.); trifoliate orange (Poncirus trifoliata (L.) Raf.); 'Sunki' mandarin (Citrus sunki Hort. ex Tan.) and 'Cleopatra' mandarin (Citrus reshni Hort. ex Tan.). Eleven years after the establishment of the orchard, trees with the greatest canopy development were budded on 'C-13' citrange and 'African' rough lemon, and both differed significantly from trees budded on trifoliate orange, 'Sunki' and 'Cleopatra' mandarins, which presented the smallest canopy development. Trees budded on 'Rangpur' lime and 'C-13' citrange had the highest cumulative yields, and were different from trees budded on trifoliate orange, 'Cleopatra' and 'Sunki' mandarins. There was no rootstock effect on mean fruit weight and on the total soluble solid/acid ratio in the juice. The 'Rangpur' lime and the 'Cleopatra' mandarin rootstocks reduced longevity of plants.


HortScience ◽  
1992 ◽  
Vol 27 (9) ◽  
pp. 1033-1036 ◽  
Author(s):  
Eliezer S. Louzada ◽  
Jude W. Grosseti ◽  
Frederick G. Gmitter ◽  
Beatriz Nielsen ◽  
J.L. Chandler ◽  
...  

Protoplast culture following polyethylene glycol-induced fusion resulted in the regeneration of vigorous tetraploid somatic hybrid plants from eight complementary parental rootstock combinations: Citrus reticulata Blanco (Cleopatra mandarin) + C. aurantium L. (sour orange), C. reticulata (Cleopatra mandarin) + C. jambhiri Lush (rough lemon), C. reticulata (Cleopatra mandarin) + C. volkameriana Ten. & Pasq. (Volkamer lemon), C. reticulata (Cleopatra mandarin) + C. limonia Osb. (Rang-pur), C. sinensis (L.) Osb. (Hamlin sweet orange) + C. limonia (Rangpur), C. aurantium (sour orange) + C. volkameriana (Volkamer lemon) zygotic seedling, C. auruntium hybrid (Smooth Flat Seville) + C. jambhiri (rough lemon), and C. sinensis (Valencia sweet orange) + Carrizo citrange [C. paradisi Macf. × Poncirus trifoliata (L.) Raf.]. Diploid plants were regenerated from nonfused callus-derived protoplasts of Valencia sweet orange and Smooth Flat Seville and from nonfused leaf protoplasts of sour orange, Rangpur, rough lemon, and Volkamer lemon. Regenerated plants were classified according to leaf morphology, chromosome number, and leaf isozyme profiles. All somatic hybrid plants were tetraploid (2n = 4× = 36). One autotetraploid plant of the Volkamer lemon zygotic was recovered, apparently resulting from a homokaryotic fusion. These eight new citrus somatic hybrids have been propagated and entered into field trials.


1998 ◽  
Vol 88 (5) ◽  
pp. 389-395 ◽  
Author(s):  
T. L. Widmer ◽  
J. H. Graham ◽  
D. J. Mitchell

Phytophthora nicotianae and P. palmivora infect and cause rot of fibrous roots of susceptible and tolerant citrus rootstocks in Florida orchards. The infection and colonization by the two Phytophthora spp. of a susceptible citrus host, sour orange (Citrus aurantium), and a tolerant host, trifoliate orange (Poncirus trifoliata), were compared using light and electron microscopy. Penetration by both Phytophthora spp. occurred within 1 h after inoculation, regardless of the host species. No differences were observed in mode of penetration of the hypodermis or the hosts' response to infection. After 24 h, P. palmivora had a significantly higher colonization of cortical cells in susceptible sour orange than in tolerant trifoliate orange. Intracellular hyphae of both Phytophthora spp. were observed in the cortex of sour orange, and cortical cells adjacent to intercellular hyphae of P. palmivora were disrupted. In contrast, the cortical cells of sour orange and trifoliate orange adjacent to P. nicotianae hyphae and the cortical cells of trifoliate orange adjacent to P. palmivora were still intact. After 48 h, the cortical cells of both hosts adjacent to either Phytophthora spp. were disrupted. After 48 and 72 h, P. palmivora hyphae colonized the cortex of sour orange more extensively than the cortex of trifoliate orange; P. palmivora also colonized both hosts more extensively than P. nicotianae. A higher rate of electrolyte leakage among host-pathogen combinations reflected the combined effects of greater cell disruption by P. palmivora than by P. nicotianae, and the higher concentration of electrolytes in healthy roots of trifoliate orange than of sour orange. Although cellular responses unique to the tolerant host were not observed, reduced hyphal colonization by both pathogens in the cortex of trifoliate orange compared with sour orange is evidence for a putative resistance factor(s) in the trifoliate orange roots that inhibits the growth of Phytophthora spp.


1971 ◽  
Vol 11 (48) ◽  
pp. 123 ◽  
Author(s):  
CR Millikan ◽  
EN Bjarnason ◽  
BC Hanger

Five scions and ten rootstocks were tested in an eight-year trial at Irymple, near Mildura, Victoria. The scions were two old-line Lisbons, a nucellar Eureka, and two old-line Eurekas. Cumulative yields averaged for the ten rootstocks and expressed as a percentage of the best scion were : Rix Lisbon 100, Doncaster Lisbon 99, Frost Nucellar Eureka 95, Rodwell Eureka 89, and Villa Franca Eureka 73. The rootstocks, with their percentage yields in parentheses, were : Rough lemon (100), Cavanagh sweet orange (90), Symons sweet orange (84), Marsh grapefruit (73, Cox sweet orange (74), Cleopatra mandarin (72). Seville sour orange (721, Sampson tangelo (69), Emperor mandarin (69), and Carrizo citrange (30). The poor performance of Carrizo citrange is discussed in terms of virus infection and incompatibility. The incidence and importance of scion overgrowth is also reported and discussed.


Sign in / Sign up

Export Citation Format

Share Document