Geometrical similarity in successively developed folds and sheath folds in the basement rocks of the northwestern Indian Shield

2010 ◽  
Vol 148 (1) ◽  
pp. 171-182 ◽  
Author(s):  
DEEPAK C. SRIVASTAVA

AbstractAn intensely deformed gneiss–migmatite terrane and a relatively undeformed granulite–granitoid terrane constitute the bulk of Precambrian basement in the northwestern Indian Shield. This article traces the structural evolution in the gneiss–migmatite terrane, where traditional methods of structural analysis are difficult to apply, and shows how successively developed folds can assume identical geometry and orientation at an advanced stage of progressive ductile shearing. The gneiss–migmatite terrane exemplifies a regional-scale ductile shear zone that preserves the history of polyphase folding and sheath folding. Geometrical similarity between individual/domain-scale sheath folds and mesoscopic/regional-scale folds implies that sheath folding is common at all scales in the gneiss–migmatite terrane. As the mylonite foliation that traces successive folds is curviplanar, the successively initiated hinge lines were curvilinear from their inception in the shear zone. At the advanced stage of ductile shearing, the hinge line curvatures were accentuated due to their rotation towards subvertically directed maximum stretching (X), and variably oriented fold axial planes were brought into approximate parallelism with the upright principal plane (XY) of the bulk strain ellipsoid. Eventually all the folds, irrespective of their relative order of development, became strongly non-cylindrical, extremely tight, isoclinal and approximately co-planar with respect to each other. It is due to the above geometrical modifications during ductile shearing that folds, irrespective of their order of development, now appear identical with respect to isoclinal geometry, axial plane orientation and hinge line curvilinearity. Evidence from the fold orientations, the deformed lineation patterns and the sheath fold geometry suggest that the shearing occurred in a general shear type of bulk strain, and NNW–SSE-directed subhorizontal compression resulted in subvertically directed stretching in the gneiss–migmatite terrane.

1992 ◽  
Vol 29 (11) ◽  
pp. 2429-2444 ◽  
Author(s):  
Keith Benn ◽  
Edward W. Sawyer ◽  
Jean-Luc Bouchez

The late Archean Opatica granitoid-gneiss belt is situated within the northern Abitibi Subprovince, along the northern margin of the Abitibi greenstone belt. Approximately 200 km of structural section was mapped along three traverses within the previously unstudied Opatica belt. The earliest preserved structures are penetrative foliations and stretching and mineral lineations recording regional ductile shearing (D1). Late-D1 deformation was concentrated into kilometre-scale ductile fault zones, typically with L > S tectonite fabrics. Two families of lineations are associated with D1, indicating shearing both parallel and transverse to the east-northeast trend of the belt. Lineations trending east-northeast or northwest–southeast tend to be dominant within domains separated by major fault zones. In light of the abundant evidence for early north–south compression documented throughout southern Superior Province, including the Abitibi greenstone belt, D1 is interpreted in terms of mid-crustal thrusting, probably resulting in considerable crustal thickening. Movement-sense indicators suggest that thrusting was dominantly southward vergent. D2 deformation resulted in the development of vertical, regional-scale dextral and sinistral transcurrent fault zones and open to tight upright horizontal folds of D1 fabrics. In the context of late Archean orogenesis in southern Superior Province, the tectonic histories of the Abitibi and Opatica belts should not be considered separately. The Opatica belt may correlate with the present-day mid-crustal levels of the Abitibi greenstone belt, and to crystalline complexes within the Abitibi belt. It is suggested that the Abitibi Subprovince should be viewed, at the regional scale, as a dominantly southward-vergent orogenic belt. This work demonstrates that structural study of granitoid-gneiss belts adjacent to greenstone belts can shed considerable light on the regional structure and structural evolution of late Archean terranes.


2015 ◽  
Vol 7 (1) ◽  
pp. 909-955
Author(s):  
E. Fazio ◽  
G. Ortolano ◽  
R. Cirrincione ◽  
A. Pezzino ◽  
R. Visalli

Abstract. Mylonitic rocks involved within a polyphase crustal-scale shear zone, cropping out in the Aspromonte Massif (Calabria, Italy), has been investigated to reveal the meso- and micro-structural evolution (from ductile- to brittle-type deformation) occurred during exhumation trajectory. A relatively small area (about 4 km2) has been selected in the central-eastern part of the massif to constrain the sequence of the structural features from the earliest ones (Hercynian in age), almost totally obliterated by a pervasive mylonitic foliation (plastic regime), up to recent ones, consisting of various sets of veins typical of semibrittle to brittle regime. The former ductile evolution was followed by a compressive thin-skinned thrusting stage developed during the Apennine phase of the Alpine Orogeny, interested by a second brittle stage, consistent with the switching from compressive to extensional tectonics. This last stage accompanied the final exhumation process causing the activation of regional scale normal faults, which partly disarticulated previous mylonitic microstructures. A suite of oriented specimens were collected and analyzed to complete the deformational history already recognized in the field. Quartz c axis orientation patterns confirm the greenschist facies conditions of the former ductile exhumation stage with a dominant top-to-NE sense of shear. Microstructural investigations highlighted the progressive development from plastic- to brittle-type structures, allowing to constrain each step of the multistage exhumation history, and to establish the relative timing of the stress field variation causing thrusting and subsequent normal faulting. Obtained results support a continue compressional exhumation of this sector since the opening of Tyrrhenian basin (10 Ma).


2021 ◽  
Author(s):  
Mario Buehler ◽  
Roger Zurbriggen ◽  
Alfons Berger ◽  
Marco Herwegh ◽  
Daniela Rubatto

<p>Many pre‐Mesozoic basements of the Alpine belt contain kilometre‐scaled folds with steeply inclined axial planes and fold axes. Those structures are referred to as Schlingen folds. They deform polymetamorphic gneisses, often Late‐Ordovician metagranitoids and are cross‐cut themselves by Permian intrusions. However, the structural evolution of such Schlingen is still not completely understood and their geodynamic significance for the Variscan evolution is not clear. To close this gap, this study investigates in detail a well-preserved Schlingen structure in the Gotthard nappe (Central Swiss Alps). This Schlingen fold evolved by a combination of shearing and folding under amphibolite facies conditions. Detailed digital field mapping coupled with petrological and structural investigations reveal local synkinematic migmatisation in the fold hinges parallel to axial planes. U‐Pb dating of zircons separated from associated leucosomes reveal cores that record a detrital country rock age of 450 ± 3 Ma, and rims with a range of dates from 270 to 330 Ma. The main cluster defines an age of 316 ± 4 Ma. We ascribe this Late‐Carboniferous age to peak metamorphic conditions of the late‐Variscan Schlingen phase.</p><p>The pre-Schlingen structures are subdivided into three older deformation events, which are connected to the Cenerian and post-Cenerian deformations. In addition, until now unknown, post Schlingen-, but pre-Alpine transpressional deformation have been detected and described. This superimposed deformation produced locally a low-grade foliation and minor undulation of the Schlingen structures.</p><p>The detail data of the investigated fold structures are linked with already described Schlingen folds in the wider Alpine realm, which all are concentrated in the most southern parts of the Variscides. From a geodynamic point of view and based on the new tectono-metamorphic constraints, we propose Schlingen formation preceded and concurred the crustal-scale transpressional tectonics of the East Variscan Shear Zone. This scenario separates, at least in a structural sense, the Southern Variscides from more northern parts (also Gondwana derived) inside Pangea, where Schlingen folds are absent.</p>


2020 ◽  
Vol 191 ◽  
pp. 2 ◽  
Author(s):  
Dominique Chardon ◽  
Ousmane Bamba ◽  
Kalidou Traoré

Shear zones of the Paleoproterozoic Eburnean accretionary Orogen (West African craton) are investigated by means of large-scale structural mapping. Regional scale (10-100 km) mapping was based on the aeromagnetic survey of Burkina Faso and craton-scale (1000 km) mapping on a compilation of fabric data. At both scales, shear zones are arranged as an anastomosed transpressional network that accommodated distributed shortening and lateral flow of the orogenic lithosphere between the converging Kénéma-Man and Congo Archean provinces. Structural interference patterns at both scales were due to three-dimensional partitioning of progressive transpressional deformation and interactions among shear zones that absorbed heterogeneities in the regional flow patterns while maintaining the connectivity of the shear zone network. Such orogen-scale kinematic patterns call for caution in using the deformation phase approach without considering the “bigger structural picture” and interpreting displacement history of individual shear zones in terms of plate kinematics. The West African shear zone pattern is linked to that of the Guiana shield through a new transatlantic correlation to produce an integrated kinematic model of the Eburnean-Transamazonian orogen.


2013 ◽  
Vol 50 (12) ◽  
pp. 1165-1177
Author(s):  
Natalie J. Pietrzak-Renaud

The base of the Proterozoic Negaunee Iron Formation is exposed in the open pit at Tilden Mine, Marquette, Michigan. Juxtaposed against the Archean-aged Palmer Gneiss, it is bounded by the regional-scale Southern Shear Zone and cut by two sets of dykes: an older chloritic and schistose set and a younger 1.1 Ga Keweenawan set. Tilden Mine is dominated by a 100 m scale plunging northwest-anticline and is cut by a growth fault locally termed the Tower Hill Fault that intersects the Southern Shear Zone. The base of the exposed iron formation is composed of three lithofacies, including lower clastics that grade into the overlying banded iron formation that in turn grades upward into granular iron formation. This succession is capped by chloritic metadiabases locally termed the Summit Hill Sill and Pillar Intrusive. Petrographic and mineral chemical investigations document primary or early diagenetic hematite, siderite and possibly ferri-hydrite, metamorphic and related hydrothermal magnetite, chlorite, late martite overgrowing earlier magnetite and growth of specularite. All three lithofacies are cut by brittle fractures and late quartz veins. Brittle fractures are coated with chlorite, carbonate minerals, fluor-apatite, and sparse Cu-sulphides. These lithofacies document initial clastic sedimentation of strained detrital quartz into a subsiding fault trough. Over time, as subsidence slowed or sea level fluctuated, clastic deposition competed with quiescent chemical sedimentation, leading to deposition of the banded iron formation facies. As a stable shelf platform emerged, the granular iron formation facies was deposited via wave reworking of hardgrounds. Subsequent diagenesis initiated dissolution of carbonate and chert and promoted diagenetic replacement of primary iron minerals and chert. Regional metamorphism during Penokean orogeny at 1875–1835 Ma produced a suite of secondary metamorphic and related hydrothermal minerals. Metamorphism and hydrothermal flux related to the 1750 Ma development of the Republic Metamorphic Node overprinted the iron formation at Tilden to greenschist facies and infilled brittle fractures with a unique mineral assemblage. This unique mineral assemblage exhibits some striking similarities to Mn, Au, and Cu-sulphides documented at Champion Mine, west of Tilden, and proximal to the core of the Republic Node.


2018 ◽  
Vol 58 (2) ◽  
pp. 793
Author(s):  
Karen Connors ◽  
Cedric Jorand ◽  
Peter Haines ◽  
Yijie Zhan ◽  
Lynn Pryer

A new regional scale SEEBASE® model has been produced for the intracratonic Canning Basin, located in the north of Western Australia. The 2017 Canning Basin SEEBASE model is more than an order of magnitude higher resolution than the 2005 OZ SEEBASE version — the average resolution is ~1 : 1 M scale with higher resolution in areas of shallow basement with 2D seismic coverage — such as the Broome Platform and Barbwire Terrace. Post-2005 acquisition of potential field, seismic and well data in the Canning Basin by the Geological Survey of Western Australia (GSWA), Geoscience Australia and industry provided an excellent opportunity to upgrade the SEEBASE depth-to-basement model in 2017. The SEEBASE methodology focuses on a regional understanding of basement, using potential field data to interpret basement terranes, depth-to-basement (SEEBASE), regional structural geology and basement composition. The project involved extensive potential field processing and enhancement and compilation of a wide range of datasets. Integrated interpretation of the potential field data with seismic and well analysis has proven quite powerful and illustrates the strong basement control on the extent and location of basin elements. The project has reassessed the structural evolution of the basin, identified and mapped major structures and produced fault-event maps for key tectonic events. In addition, interpretative maps of basement terranes, depth-to-Moho, basement thickness, basement composition and total sediment thickness have been used to calculate a basin-wide map of basement-derived heat flow. The 2017 Canning Basin SEEBASE is the first public update of the widely used 2005 OZ SEEBASE. All the data and interpretations are available from the GSWA as a report and integrated ArcGIS project, which together provide an excellent summary of the key features within the Canning Basin that will aid hydrocarbon and mineral explorers in the region.


1996 ◽  
Vol 33 (2) ◽  
pp. 199-215 ◽  
Author(s):  
Benoît Dubé ◽  
Kathleen Lauzière

The Cape Ray Fault Zone is a major Paleozoic structure in southwestern Newfoundland, and occurs at or close to the boundary between two major continental blocks, Laurentia and Avalonia. A detailed structural analysis demonstrates that the fault records early reverse-sinistral thrusting of the Grand Bay Complex at amphibolite grade (D2), followed by a protracted event (D3) characterized by reverse-dextral thrusting of the Grand Bay Complex rocks on top of the supracrustal rocks of the Windsor Point Group and retrogression to greenschist facies, as well as a pre-384 Ma orogen-parallel dextral transcurrent mylonite (D4) during the later stages of the collision. Regional-scale strain partitioning induced heterogeneity of strain both along and across the strike of the Cape Ray Fault Zone. The east–west-oriented segment of the Cape Ray Fault Zone is a tear fault that accommodated differential displacement along the length of the fault. Later stages of the deformation include post-384 Ma sinistral transcurrent reactivation of the dextral mylonite and extension. The reverse-sinistral thrusting and the reverse-dextral motion occurred between 415 and 386 Ma and correspond to the two-phase Acadian orogeny recognized at the scale of the orogen and believed to be related to collision between Laurentia and Avalonia. The Cape Ray Fault Zone preserves evidence of large-scale geodynamic processes affecting rocks where the kinematics and the timing are well constrained.


Sign in / Sign up

Export Citation Format

Share Document