scholarly journals On a theorem of Dvoretsky, Wald, and Wolfowitz concerning Liapounov Measures

1987 ◽  
Vol 29 (2) ◽  
pp. 205-220 ◽  
Author(s):  
D. A. Edwards

Let ω be a non-empty set, ℱ a Boolean σ-algebra of subsets of Ω, k a natural number, and let m:ℱ→ℝk be a non-atomic vector measure. Then, by the celebrated theorem of Liapounov [11], the range m[3F] = {m(A): A ε ℱ3F} of m is a compact convex subset of ℝk. This theorem has been generalized in a number of ways. For example Kingman and Robertson [8] and Knowles [9] have shown that, under appropriate conditions, results in the same spirit can be proved for measures taking their values in infinite-dimensional vector spaces. Another type of generalization was obtained by Dvoretsky, Wald and Wolfowitz [6,7]. What they do is to take m as above together with a natural number n≥ 1. They then consider the set Knof all vectorswhere (A1 A2,…, An) is an ordered ℱ-measurable partition of Ω (i.e. a partition whose terms A, all belong to ℱ). They prove in [6] that Kn is a compact convex subset of ℝnk and moreover that Kn is equal to the set of all vectors of the formwhere (ϕ1, ϕ2…, ϕn) is an ℱ-measurable partition of unity; i.e. it is an n-tuple of non-negative ϕr on Ω such thatLiapounov's theorem can be obtained as a corollary of this result by taking n= 2.

Author(s):  
K. J. Falconer

Let H(μ, θ) be the hyperplane in Rn (n ≥ 2) that is perpendicular to the unit vector 6 and perpendicular distance μ from the origin; that is, H(μ, θ) = (x ∈ Rn: x. θ = μ). (Note that H(μ, θ) and H(−μ, −θ) are the same hyperplanes.) Let X be a proper compact convex subset of Rm. If f(x) ∈ L1(X) we will denote by F(μ, θ) the projection of f perpendicular to θ; that is, the integral of f(x) over H(μ, θ) with respect to (n − 1)-dimensional Lebesgue measure. By Fubini's Theorem, if f(x) ∈ L1(X), F(μ, θ) exists for almost all μ for every θ. Our aim in this paper is, given a finite collection of unit vectors θ1, …, θN, to characterize the F(μ, θi) that are the projections of some function f(x) with support in X for 1 ≤ i ≤ N.


1976 ◽  
Vol 19 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Joseph Bogin

In [7], Goebel, Kirk and Shimi proved the following:Theorem. Let X be a uniformly convex Banach space, K a nonempty bounded closed and convex subset of X, and F:K→K a continuous mapping satisfying for each x, y∈K:(1)where ai≥0 and Then F has a fixed point in K.In this paper we shall prove that this theorem remains true in any Banach space X, provided that K is a nonempty, weakly compact convex subset of X and has normal structure (see Definition 1 below).


Author(s):  
Michael Edelstein ◽  
Daryl Tingley

AbstractSeveral procedures for locating fixed points of nonexpansive selfmaps of a weakly compact convex subset of a Banach space are presented. Some of the results involve the notion of an asymptotic center or a Chebyshev center.


1982 ◽  
Vol 25 (3) ◽  
pp. 302-310 ◽  
Author(s):  
R. J. Gardner ◽  
S. Kwapien ◽  
D. P. Laurie

AbstractB. Grünbaum and J. N. Lillington have considered inequalities defined by three lines meeting in a compact convex subset of the plane. We prove a conjecture of Lillington and propose some conjectures of our own.


1969 ◽  
Vol 9 (1-2) ◽  
pp. 25-28 ◽  
Author(s):  
S. J. Bernau

This note shows that the set of bare points of a compact convex subset of a normed linear space is, in general, a proper subset of its set of exposed points.


1990 ◽  
Vol 32 (1) ◽  
pp. 25-33 ◽  
Author(s):  
A. Dean ◽  
F. Zorzitto

By a representation of the extended Dynkin diagram we shall mean a list of 5 vector spaces P, E1, E2, E3, E4 over an algebraically closed field K, and 4 linear maps a1, a2, a3, a4 as shown.The spaces need not be of finite dimension.In their solution of the 4-subspace problem [6], Gelfand and Ponomarev have classified such representations when the spaces are finite dimensional. A representation like (1) can also be viewed as a module over the K-algebra R4 consisting of all 5 × 5 matrices having zeros off the first row and off the main diagonal.


2003 ◽  
Vol 2003 (7) ◽  
pp. 407-433 ◽  
Author(s):  
Tadeusz Dobrowolski

The Schauder conjecture that every compact convex subset of a metric linear space has the fixed-point property was recently established by Cauty (2001). This paper elaborates on Cauty's proof in order to make it more detailed, and therefore more accessible. Such a detailed analysis allows us to show that the convex compacta in metric linear spaces possess the simplicial approximation property introduced by Kalton, Peck, and Roberts. The latter demonstrates that the original Schauder approach to solve the conjecture is in some sense “correctable.”


Author(s):  
Kok-Keong Tan

AbstractLet E be a Hausdorff topological vector space, let K be a nonempty compact convex subset of E and let f, g: K → 2E be upper semicontinuous such that for each x ∈ K, f(x) and g(x) are nonempty compact convex. Let Ω ⊂ 2E be convex and contain all sets of the form x − f(x), y − x + g(x) − f(x), for x, y ∈ K. Suppose p: K × Ω →, R satisfies: (i) for each (x, A) ∈ K × Ω and for ε > 0, there exist a neighborhood U of x in K and an open subset set G in E with A ⊂ G such that for all (y, B) ∈ K ×Ω with y ∈ U and B ⊂ G, | p(y, B) - p(x, A)| < ε, and (ii) for each fixed X ∈ K, p(x, ·) is a convex function on Ω. If p(x, x − f(x)) ≤ p(x, g(x) − f(x)) for all x ∈ K, and if, for each x ∈ K with f(x) ∩ g(x) = ø, there exists y ∈ K with p(x, y − x + g(x) − f(x)) < p(x, x − f(x)), then there exists an x0 ∈ K such that f(x0) ∩ g(x0) ≠ ø. Another coincidence theorem on a nonempty compact convex subset of a Hausdorff locally convex topological vector space is also given.


Sign in / Sign up

Export Citation Format

Share Document