scholarly journals ISOMORPHIC INDUCED MODULES AND DYNKIN DIAGRAM AUTOMORPHISMS OF SEMISIMPLE LIE ALGEBRAS

2015 ◽  
Vol 58 (1) ◽  
pp. 187-203
Author(s):  
JÉRÉMIE GUILHOT ◽  
CÉDRIC LECOUVEY

AbstractConsider a simple Lie algebra $\mathfrak{g}$ and $\overline{\mathfrak{g}}$ ⊂ $\mathfrak{g}$ a Levi subalgebra. Two irreducible $\overline{\mathfrak{g}}$-modules yield isomorphic inductions to $\mathfrak{g}$ when their highest weights coincide up to conjugation by an element of the Weyl group W of $\mathfrak{g}$ which is also a Dynkin diagram automorphism of $\overline{\mathfrak{g}}$. In this paper, we study the converse problem: given two irreducible $\overline{\mathfrak{g}}$-modules of highest weight μ and ν whose inductions to $\mathfrak{g}$ are isomorphic, can we conclude that μ and ν are conjugate under the action of an element of W which is also a Dynkin diagram automorphism of $\overline{\mathfrak{g}}$? We conjecture this is true in general. We prove this conjecture in type A and, for the other root systems, in various situations providing μ and ν satisfy additional hypotheses. Our result can be interpreted as an analogue for branching coefficients of the main result of Rajan [6] on tensor product multiplicities.

10.37236/8758 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Pamela E. Harris ◽  
Margaret Rahmoeller ◽  
Lisa Schneider ◽  
Anthony Simpson

Berenshtein and Zelevinskii provided an exhaustive list of pairs of weights $(\lambda,\mu)$ of simple Lie algebras $\mathfrak{g}$ (up to Dynkin diagram isomorphism) for which the multiplicity of the weight $\mu$ in the representation of $\mathfrak{g}$ with highest weight $\lambda$ is equal to one. Using Kostant's weight multiplicity formula we describe and enumerate the contributing terms to the multiplicity for subsets of these pairs of weights and show that, in these cases, the cardinality of these contributing sets is enumerated by (multiples of) Fibonacci numbers. We conclude by using these results to compute the associated $q$-multiplicity for the pairs of weights considered, and conjecture that in all cases the $q$-multiplicity of such pairs of weights is given by a power of $q$.


2019 ◽  
Vol 18 (03) ◽  
pp. 1950051
Author(s):  
Saeid Azam ◽  
Zahra Kharaghani

We establish extensions of some important features of affine theory to affine reflection systems (extended affine root systems) of type [Formula: see text]. We present a positivity theory which decomposes in a natural way the nonisotropic roots into positive and negative roots, then using that, we give an extended version of the well-known exchange condition for the corresponding Weyl group, and finally give an extended version of the Bruhat ordering and the [Formula: see text]-Lemma. Furthermore, a new presentation of the Weyl group in terms of the parity permutations is given, this in turn leads to a parity theorem which gives a characterization of the reduced words in the Weyl group. All root systems involved in this work appear as the root systems of certain well-studied Lie algebras.


2016 ◽  
Vol 56 (3) ◽  
pp. 202 ◽  
Author(s):  
Lenka Háková ◽  
Jiří Hrivnák ◽  
Lenka Motlochová

The aim of this article is to describe several cubature formulas related to the Weyl group orbit functions, i.e. to the special cases of the Jacobi polynomials associated to root systems. The diagram containing the relations among the special functions associated to the Weyl group orbit functions is presented and the link between the Weyl group orbit functions and the Jacobi polynomials is explicitly derived in full generality. The four cubature rules corresponding to these polynomials are summarized for all simple Lie algebras and their properties simultaneously tested on model functions. The Clenshaw-Curtis method is used to obtain additional formulas connected with the simple Lie algebra <em>C</em><sub>2</sub>.


Author(s):  
Pavel Galashin ◽  
Sam Hopkins ◽  
Thomas McConville ◽  
Alexander Postnikov

Abstract Jim Propp recently proposed a labeled version of chip-firing on a line and conjectured that this process is confluent from some initial configurations. This was proved by Hopkins–McConville–Propp. We reinterpret Propp’s labeled chip-firing moves in terms of root systems; a “central-firing” move consists of replacing a weight $\lambda$ by $\lambda +\alpha$ for any positive root $\alpha$ that is orthogonal to $\lambda$. We show that central-firing is always confluent from any initial weight after modding out by the Weyl group, giving a generalization of unlabeled chip-firing on a line to other types. For simply-laced root systems we describe this unlabeled chip-firing as a number game on the Dynkin diagram. We also offer a conjectural classification of when central-firing is confluent from the origin or a fundamental weight.


1994 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
D. Ž. Doković ◽  
P. Check ◽  
J.-Y. Hée

AbstractLet R be a root system (in the sense of Bourbaki) in a finite dimensional real inner product space V. A subset P ⊂ R is closed if α, β ∊ P and α + β ∊ R imply that α + β ∊ P. In this paper we shall classify, up to conjugacy by the Weyl group W of R, all closed sets P ⊂ R such that R\P is also closed. We also show that if θ:R —> R′ is a bijection between two root systems such that both θ and θ-1 preserve closed sets, and if R has at most one irreducible component of type A1, then θ is an isomorphism of root systems.


2018 ◽  
Vol 2020 (3) ◽  
pp. 914-956 ◽  
Author(s):  
Dylan Rupel ◽  
Salvatore Stella ◽  
Harold Williams

Abstract The cluster algebra of any acyclic quiver can be realized as the coordinate ring of a subvariety of a Kac–Moody group—the quiver is an orientation of its Dynkin diagram, defining a Coxeter element and thereby a double Bruhat cell. We use this realization to connect representations of the quiver with those of the group. We show that cluster variables of preprojective (resp. postinjective) quiver representations are realized by generalized minors of highest-weight (resp. lowest-weight) group representations, generalizing results of Yang–Zelevinsky in finite type. In type $A_{n}^{\!(1)}$ and finitely many other affine types, we show that cluster variables of regular quiver representations are realized by generalized minors of group representations that are neither highest- nor lowest-weight; we conjecture this holds more generally.


2011 ◽  
Vol 63 (6) ◽  
pp. 1238-1253 ◽  
Author(s):  
Daniel Bump ◽  
Maki Nakasuji

AbstractW. Casselman defined a basis fu of Iwahori fixed vectors of a spherical representation of a split semisimple p-adic group G over a nonarchimedean local field F by the condition that it be dual to the intertwining operators, indexed by elements u of the Weyl group W. On the other hand, there is a natural basis , and one seeks to find the transition matrices between the two bases. Thus, let and . Using the Iwahori–Hecke algebra we prove that if a combinatorial condition is satisfied, then , where z are the Langlands parameters for the representation and α runs through the set S(u, v) of positive coroots (the dual root systemof G) such that with rα the reflection corresponding to α. The condition is conjecturally always satisfied if G is simply-laced and the Kazhdan–Lusztig polynomial Pw0v,w0u = 1 with w0 the long Weyl group element. There is a similar formula for conjecturally satisfied if Pu,v = 1. This leads to various combinatorial conjectures.


2017 ◽  
Vol 69 (02) ◽  
pp. 453-480
Author(s):  
Timothée Marquis ◽  
Karl-Hermann Neeb

Abstract The closest infinite-dimensional relatives of compact Lie algebras are Hilbert-Lie algebras, i.e., real Hilbert spaces with a Lie algebra structure for which the scalar product is invariant. Locally affine Lie algebras (LALAs) correspond to double extensions of (twisted) loop algebras over simple Hilbert-Lie algebras , also called affinisations of . They possess a root space decomposition whose corresponding root system is a locally affine root system of one of the 7 families for some infinite set J. To each of these types corresponds a “minimal ” affinisation of some simple Hilbert-Lie algebra , which we call standard. In this paper, we give for each affinisation g of a simple Hilbert-Lie algebra an explicit isomorphism from g to one of the standard affinisations of . The existence of such an isomorphism could also be derived from the classiffication of locally affine root systems, but for representation theoretic purposes it is crucial to obtain it explicitly as a deformation between two twists that is compatible with the root decompositions. We illustrate this by applying our isomorphism theorem to the study of positive energy highest weight representations of g. In subsequent work, this paper will be used to obtain a complete classification of the positive energy highest weight representations of affinisations of .


Sign in / Sign up

Export Citation Format

Share Document