scholarly journals ON THE CHOW RING OF CERTAIN LEHN–LEHN–SORGER–VAN STRATEN EIGHTFOLDS

2021 ◽  
pp. 1-24
Author(s):  
CHIARA CAMERE ◽  
ALBERTO CATTANEO ◽  
ROBERT LATERVEER

Abstract We consider a 10-dimensional family of Lehn–Lehn–Sorger–van Straten hyperkähler eightfolds, which have a non-symplectic automorphism of order 3. Using the theory of finite-dimensional motives, we show that the action of this automorphism on the Chow group of 0-cycles is as predicted by the Bloch–Beilinson conjectures. We prove a similar statement for the anti-symplectic involution on varieties in this family. This has interesting consequences for the intersection product of the Chow ring of these varieties.

2019 ◽  
Vol 30 (02) ◽  
pp. 1950009
Author(s):  
Hans-Christian Herbig ◽  
Markus J. Pflaum

Theorem 1 of [G. W. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975) 63–68.] says that for a linear action of a compact Lie group [Formula: see text] on a finite dimensional real vector space [Formula: see text], any smooth [Formula: see text]-invariant function on [Formula: see text] can be written as a composite with the Hilbert map. We prove a similar statement for the case of Whitney functions along a subanalytic set [Formula: see text] fulfilling some regularity assumptions. In order to deal with the case when [Formula: see text] is not [Formula: see text]-stable, we use the language of groupoids.


Author(s):  
Robert Laterveer

Abstract This article is about Lehn–Lehn–Sorger–van Straten eightfolds $Z$ and their anti-symplectic involution $\iota$ . When $Z$ is birational to the Hilbert scheme of points on a K3 surface, we give an explicit formula for the action of $\iota$ on the Chow group of $0$ -cycles of $Z$ . The formula is in agreement with the Bloch–Beilinson conjectures and has some non-trivial consequences for the Chow ring of the quotient.


Author(s):  
Robert Laterveer ◽  
Charles Vial

The Chow rings of hyperKähler varieties are conjectured to have a particularly rich structure. In this paper, we focus on the locally complete family of double EPW sextics and establish some properties of their Chow rings. First, we prove a Beauville–Voisin type theorem for zero-cycles on double EPW sextics; precisely, we show that the codimension-4 part of the subring of the Chow ring of a double EPW sextic generated by divisors, the Chern classes and codimension-2 cycles invariant under the anti-symplectic covering involution has rank one. Second, for double EPW sextics birational to the Hilbert square of a K3 surface, we show that the action of the anti-symplectic involution on the Chow group of zero-cycles commutes with the Fourier decomposition of Shen–Vial.


1994 ◽  
Vol 33 (01) ◽  
pp. 81-84 ◽  
Author(s):  
S. Cerutti ◽  
S. Guzzetti ◽  
R. Parola ◽  
M.G. Signorini

Abstract:Long-term regulation of beat-to-beat variability involves several different kinds of controls. A linear approach performed by parametric models enhances the short-term regulation of the autonomic nervous system. Some non-linear long-term regulation can be assessed by the chaotic deterministic approach applied to the beat-to-beat variability of the discrete RR-interval series, extracted from the ECG. For chaotic deterministic systems, trajectories of the state vector describe a strange attractor characterized by a fractal of dimension D. Signals are supposed to be generated by a deterministic and finite dimensional but non-linear dynamic system with trajectories in a multi-dimensional space-state. We estimated the fractal dimension through the Grassberger and Procaccia algorithm and Self-Similarity approaches of the 24-h heart-rate variability (HRV) signal in different physiological and pathological conditions such as severe heart failure, or after heart transplantation. State-space representations through Return Maps are also obtained. Differences between physiological and pathological cases have been assessed and generally a decrease in the system complexity is correlated to pathological conditions.


Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter introduces the concept of stable completion and provides a concrete representation of unit vector Mathematical Double-Struck Capital A superscript n in terms of spaces of semi-lattices, with particular emphasis on the frontier between the definable and the topological categories. It begins by constructing a topological embedding of unit vector Mathematical Double-Struck Capital A superscript n into the inverse limit of a system of spaces of semi-lattices L(Hsubscript d) endowed with the linear topology, where Hsubscript d are finite-dimensional vector spaces. The description is extended to the projective setting. The linear topology is then related to the one induced by the finite level morphism L(Hsubscript d). The chapter also considers the condition that if a definable set in L(Hsubscript d) is an intersection of relatively compact sets, then it is itself relatively compact.


Author(s):  
Claire Voisin

This book provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The book is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by the author. It focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by the author looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others.


Sign in / Sign up

Export Citation Format

Share Document