Some Contributions to the Theory of Near-Critical Bisexual Branching Processes

2007 ◽  
Vol 44 (02) ◽  
pp. 492-505
Author(s):  
M. Molina ◽  
M. Mota ◽  
A. Ramos

We investigate the probabilistic evolution of a near-critical bisexual branching process with mating depending on the number of couples in the population. We determine sufficient conditions which guarantee either the almost sure extinction of such a process or its survival with positive probability. We also establish some limiting results concerning the sequences of couples, females, and males, suitably normalized. In particular, gamma, normal, and degenerate distributions are proved to be limit laws. The results also hold for bisexual Bienaymé–Galton–Watson processes, and can be adapted to other classes of near-critical bisexual branching processes.

2007 ◽  
Vol 44 (2) ◽  
pp. 492-505 ◽  
Author(s):  
M. Molina ◽  
M. Mota ◽  
A. Ramos

We investigate the probabilistic evolution of a near-critical bisexual branching process with mating depending on the number of couples in the population. We determine sufficient conditions which guarantee either the almost sure extinction of such a process or its survival with positive probability. We also establish some limiting results concerning the sequences of couples, females, and males, suitably normalized. In particular, gamma, normal, and degenerate distributions are proved to be limit laws. The results also hold for bisexual Bienaymé–Galton–Watson processes, and can be adapted to other classes of near-critical bisexual branching processes.


2007 ◽  
Vol 44 (02) ◽  
pp. 492-505 ◽  
Author(s):  
M. Molina ◽  
M. Mota ◽  
A. Ramos

We investigate the probabilistic evolution of a near-critical bisexual branching process with mating depending on the number of couples in the population. We determine sufficient conditions which guarantee either the almost sure extinction of such a process or its survival with positive probability. We also establish some limiting results concerning the sequences of couples, females, and males, suitably normalized. In particular, gamma, normal, and degenerate distributions are proved to be limit laws. The results also hold for bisexual Bienaymé–Galton–Watson processes, and can be adapted to other classes of near-critical bisexual branching processes.


1984 ◽  
Vol 21 (01) ◽  
pp. 40-49 ◽  
Author(s):  
F. C. Klebaner

We consider a branching-process model {Zn }, where the law of offspring distribution depends on the population size. We consider the case when the means mn (mn is the mean of offspring distribution when the population size is equal to n) tend to a limit m > 1 as n →∞. For a certain class of processes {Zn } necessary conditions for convergence in L 1 and L 2 and sufficient conditions for almost sure convergence and convergence in L 2 of Wn = Zn/mn are given.


1999 ◽  
Vol 36 (1) ◽  
pp. 146-154 ◽  
Author(s):  
Han-xing Wang

We generalize a population-size-dependent branching process to a more general branching model called the population-size-dependent branching process in random environments. For the model where {Zn}n≥0 is associated with the stationary environment ξ− = {ξn}n≥0, let B = {ω : Zn(ω) = for some n}, and q(ξ−) = P(B | ξ−, Z0 = 1). The result is that P(q(̅ξ) = 1) is either 1 or 0, and sufficient conditions for certain extinction (i.e. P(q(ξ−) = 1) = 1) and for non-certain extinction (i.e. P(q(ξ−) < 1) = 1) are obtained for the model.


1999 ◽  
Vol 36 (01) ◽  
pp. 146-154 ◽  
Author(s):  
Han-xing Wang

We generalize a population-size-dependent branching process to a more general branching model called the population-size-dependent branching process in random environments. For the model where {Z n } n≥0 is associated with the stationary environment ξ− = {ξ n } n≥0, let B = {ω : Z n (ω) = for some n}, and q(ξ−) = P(B | ξ−, Z 0 = 1). The result is that P(q(̅ξ) = 1) is either 1 or 0, and sufficient conditions for certain extinction (i.e. P(q(ξ−) = 1) = 1) and for non-certain extinction (i.e. P(q(ξ−) &lt; 1) = 1) are obtained for the model.


1980 ◽  
Vol 12 (2) ◽  
pp. 350-366 ◽  
Author(s):  
Tetsuo Fujimagari

The extinction time distributions of a class of branching processes in varying environments are considered. We obtain (i) sufficient conditions for the extinction probability q = 1 or q < 1; (ii) asymptotic formulae for the tail probability of the extinction time if q = 1; and (iii) upper bounds for 1 – q if q < 1. To derive these results, we give upper and lower bounds for the tail probability of the extinction time. For the proofs, we use a method that compares probability generating functions with fractional linear generating functions.


2005 ◽  
Vol 42 (2) ◽  
pp. 463-477 ◽  
Author(s):  
M. González ◽  
M. Molina ◽  
I. del Puerto

In this paper, we investigate the asymptotic behaviour of controlled branching processes with random control functions. In a critical case, we establish sufficient conditions for both their almost-sure extinction and for their nonextinction with a positive probability. For some suitably chosen norming constants, we also determine different kinds of limiting behaviour for this class of processes.


1984 ◽  
Vol 21 (1) ◽  
pp. 40-49 ◽  
Author(s):  
F. C. Klebaner

We consider a branching-process model {Zn}, where the law of offspring distribution depends on the population size. We consider the case when the means mn (mn is the mean of offspring distribution when the population size is equal to n) tend to a limit m > 1 as n →∞. For a certain class of processes {Zn} necessary conditions for convergence in L1 and L2 and sufficient conditions for almost sure convergence and convergence in L2 of Wn = Zn/mn are given.


1980 ◽  
Vol 12 (02) ◽  
pp. 350-366 ◽  
Author(s):  
Tetsuo Fujimagari

The extinction time distributions of a class of branching processes in varying environments are considered. We obtain (i) sufficient conditions for the extinction probability q = 1 or q &lt; 1; (ii) asymptotic formulae for the tail probability of the extinction time if q = 1; and (iii) upper bounds for 1 – q if q &lt; 1. To derive these results, we give upper and lower bounds for the tail probability of the extinction time. For the proofs, we use a method that compares probability generating functions with fractional linear generating functions.


2005 ◽  
Vol 42 (02) ◽  
pp. 463-477 ◽  
Author(s):  
M. González ◽  
M. Molina ◽  
I. del Puerto

In this paper, we investigate the asymptotic behaviour of controlled branching processes with random control functions. In a critical case, we establish sufficient conditions for both their almost-sure extinction and for their nonextinction with a positive probability. For some suitably chosen norming constants, we also determine different kinds of limiting behaviour for this class of processes.


Sign in / Sign up

Export Citation Format

Share Document