scholarly journals Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants

2007 ◽  
Vol 577 ◽  
pp. 457-466 ◽  
Author(s):  
B. FROHNAPFEL ◽  
P. LAMMERS ◽  
J. JOVANOVIĆ ◽  
F. DURST

A central goal of flow control is to minimize the energy consumption in turbulent flows and nowadays the best results in terms of drag reduction are obtained with the addition of long-chain polymers. This has been found to be associated with increased anisotropy of turbulence in the near-wall region. Other drag reduction mechanisms are analysed in this respect and it is shown that close to the wall highly anisotropic states of turbulence are commonly found. These findings are supported by results of direct numerical simulations which display high drag reduction effects of over 30% when only a few points inside the viscous sublayer are forced towards high anisotropy.

2019 ◽  
Vol 875 ◽  
pp. 124-172 ◽  
Author(s):  
G. Gómez-de-Segura ◽  
R. García-Mayoral

We explore the ability of anisotropic permeable substrates to reduce turbulent skin friction, studying the influence that these substrates have on the overlying turbulence. For this, we perform direct numerical simulations of channel flows bounded by permeable substrates. The results confirm theoretical predictions, and the resulting drag curves are similar to those of riblets. For small permeabilities, the drag reduction is proportional to the difference between the streamwise and spanwise permeabilities. This linear regime breaks down for a critical value of the wall-normal permeability, beyond which the performance begins to degrade. We observe that the degradation is associated with the appearance of spanwise-coherent structures, attributed to a Kelvin–Helmholtz-like instability of the mean flow. This feature is common to a variety of obstructed flows, and linear stability analysis can be used to predict it. For large permeabilities, these structures become prevalent in the flow, outweighing the drag-reducing effect of slip and eventually leading to an increase of drag. For the substrate configurations considered, the largest drag reduction observed is ${\approx}$20–25 % at a friction Reynolds number $\unicode[STIX]{x1D6FF}^{+}=180$.


1976 ◽  
Vol 75 (1) ◽  
pp. 29-47 ◽  
Author(s):  
Giselher Gust

Hot-wire anemometer measurements have been made in a dilute sea-water/claymineral suspension. For fully developed turbulent flows in an open channel with a smooth mud (from the North Sea) bottom, mean streamwise velocity profiles were measured for Reynolds numbers between 5400 and 27 800 (i.e. non-eroding and eroding flow rates) and compared with Newtonian flows under the same experimental conditions. For the clay-mineral suspensions, measurements of the kinematic viscosityv, Kármán's constantkand the mean streamwise velocity$\overline{u}$of the logarithmic layer seemed to verify a Newtonian flow structure. Although the distributions of concentration showed no substantial increase towards the wall, it was found that beneath this Newtonian core there existed a viscous sublayer whose thickness was enhanced by a factor of 2–5. The friction velocityu*determined by the gradient method in the viscous sublayer was reduced by as much as 40 %. The mean flow structure exhibited an additional new layer in the region 10 <y+< 30.The measurements indicate that turbulent-drag reduction occurs for the experimental clay-mineral suspension at non-eroding and also at eroding velocities. Agglomeration of suspended clay-mineral particles is suggested as possible explanation of this phenomenon.


2014 ◽  
Vol 747 ◽  
pp. 722-734 ◽  
Author(s):  
Hyungmin Park ◽  
Guangyi Sun ◽  
Chang-Jin “CJ” Kim

AbstractDespite the confirmation of slip flows and successful drag reduction (DR) in small-scaled laminar flows, the full impact of superhydrophobic (SHPo) DR remained questionable because of the sporadic and inconsistent experimental results in turbulent flows. Here we report a systematic set of bias-free reduction data obtained by measuring the skin-friction drags on a SHPo surface and a smooth surface at the same time and location in a turbulent boundary layer (TBL) flow. Each monolithic sample consists of a SHPo surface and a smooth surface suspended by flexure springs, all carved out from a $2.7 \times 2.7 {\mathrm{mm}}^{2}$ silicon chip by photolithographic microfabrication. The flow tests allow continuous monitoring of the plastron on the SHPo surfaces, so that the DR data are genuine and consistent. A family of SHPo samples with precise profiles reveals the effects of grating parameters on turbulent DR, which was measured to be as much as ${\sim }75\, \%$.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 197 ◽  
Author(s):  
Anoop Rajappan ◽  
Gareth H. McKinley

Despite polymer additives and superhydrophobic walls being well known as stand-alone methods for frictional drag reduction in turbulent flows, the possibility of employing them simultaneously in an additive fashion has remained essentially unexplored. Through experimental friction measurements in turbulent Taylor–Couette flow, we show that the two techniques may indeed be combined favorably to generate enhanced levels of frictional drag reduction in wall-bounded turbulence. We further propose an additive expression in Prandtl–von Kármán variables that enables us to quantitatively estimate the magnitude of this cooperative drag reduction effect for small concentrations of dissolved polymer.


2017 ◽  
Vol 824 ◽  
pp. 688-700 ◽  
Author(s):  
M. K. Fu ◽  
I. Arenas ◽  
S. Leonardi ◽  
M. Hultmark

Liquid-infused surfaces present a novel, passive method of turbulent drag reduction. Inspired by the Nepenthes Pitcher Plant, liquid-infused surfaces utilize a lubricating fluid trapped within structured roughness to facilitate a slip at the effective surface. The conceptual idea is similar to that of superhydrophobic surfaces, which rely on a lubricating air layer, whereas liquid-infused surfaces use a preferentially wetting liquid lubricant to create localized fluid–fluid interfaces. Maintaining the presence of these slipping interfaces has been shown to be an effective method of passively reducing skin friction drag in turbulent flows. Given that liquid-infused surfaces have only recently been considered for drag reduction applications, there is no available framework to relate surface and lubricant characteristics to any resulting drag reduction. Here we use results from direct numerical simulations of turbulent channel flow over idealized, liquid-infused grooves to demonstrate that the drag reduction achieved using liquid-infused surfaces can be described using the framework established for superhydrophobic surfaces. These insights can be used to explain drag reduction results observed in experimental studies of lubricant-infused surfaces. We also demonstrate how a liquid-infused surface can reduce drag even when the viscosity of the lubricant exceeds that of the external fluid flow, which at first glance can seem counter-intuitive.


Author(s):  
Masaaki Motozawa ◽  
Taiki Kurosawa ◽  
Hening Xu ◽  
Kaoru Iwamoto ◽  
Hirotomo Ando ◽  
...  

Experimental study on turbulent drag reduction (DR) and polymer concentration distribution with blowing polymer solution from whole surface of the channel wall was carried out. A set of measurements for drag reduction were performed with blowing rate for the sintered porous metal plate (0.45m × 0.45m × 3) adjusted from 0.5 L/min to 4.0 L/min, and concentration of polymer solution varied from 10 ppm to 200 ppm. Reynolds number based on the channel height was chosen for 20000 and 40000 in this experiment. The polymer concentration distribution in the near-wall region (0.5 mm &lt; y &lt; 20 mm) at three locations of the downstream from the leading edge of the blower wall was also measured. Polymer concentration can be analyzed via Total Organic Carbon (TOC) analyzer. Through the analysis of mass transfer by polymer concentration distribution, we found that polymer which exists in buffer layer (10 &lt; y+ &lt; 70) has important influence on drag reduction.


Sign in / Sign up

Export Citation Format

Share Document