scholarly journals Dynamics of reorientations and reversals of large-scale flow in Rayleigh–Bénard convection

2010 ◽  
Vol 668 ◽  
pp. 480-499 ◽  
Author(s):  
P. K. MISHRA ◽  
A. K. DE ◽  
M. K. VERMA ◽  
V. ESWARAN

We present a numerical study of the reversals and reorientations of the large-scale circulation (LSC) of convective fluid in a cylindrical container of aspect ratio one. We take Prandtl number to be 0.7 and Rayleigh numbers in the range from 6 × 105 to 3 × 107. It is observed that the reversals of the LSC are induced by its reorientation along the azimuthal direction, which are quantified using the phases of the first Fourier mode of the vertical velocity measured near the lateral surface in the midplane. During a ‘complete reversal’, the above phase changes by around 180°, leading to reversals of the vertical velocity at all the probes. On the contrary, the vertical velocity reverses only at some of the probes during a ‘partial reversal’ with phase change other than 180°. Numerically, we observe rotation-led and cessation-led reorientations, in agreement with earlier experimental results. The ratio of the amplitude of the second Fourier mode and the first Fourier mode rises sharply during the cessation-led reorientations. This observation is consistent with the quadrupolar dominant temperature profile observed during the cessations. We also observe reorientations involving double cessation.

2017 ◽  
Vol 822 ◽  
pp. 1-4 ◽  
Author(s):  
R. Ostilla-Mónico

Natural convection is omnipresent on Earth. A basic and well-studied model for it is Rayleigh–Bénard convection, the fluid flow in a layer heated from below and cooled from above. Most explorations of Rayleigh–Bénard convection focus on spatially uniform, perfectly conducting thermal boundary conditions, but many important geophysical phenomena are characterized by boundary conditions which are a mixture of conducting and adiabatic materials. For example, the differences in thermal conductivity between continental and oceanic lithospheres are believed to play an important role in plate tectonics. To study this, Wang et al. (J. Fluid Mech., vol. 817, 2017, R1), measure the effect of mixed adiabatic–conducting boundary conditions on turbulent Rayleigh–Bénard convection, finding experimental proof that even if the total heat transfer is primarily affected by the adiabatic fraction, the arrangement of adiabatic and conducting plates is crucial in determining the large-scale flow dynamics.


2016 ◽  
Vol 794 ◽  
pp. 639-654 ◽  
Author(s):  
Shi-Di Huang ◽  
Ke-Qing Xia

We report an experimental study of confinement effects in quasi-2-D turbulent Rayleigh–Bénard convection. The experiments were conducted in five rectangular cells with their height $H$ and length $L$ being the same and fixed, while the width $W$ was different for each cell to produce lateral aspect ratios (${\it\Gamma}=W/H$) of 0.6, 0.3, 0.2, 0.15 and 0.1. Direct flow field measurements reveal that the large-scale flow slows down as ${\it\Gamma}$ decreases and there are more plumes travelling through the bulk region. Moreover, the reversal frequency of the large-scale flow is found to increase drastically in smaller ${\it\Gamma}$ cells, by more than 1000-fold for the highest value of Rayleigh number reached in the experiment. The reversal frequency can be well described by a stochastic model developed by Ni et al. (J. Fluid Mech., vol. 778, 2015, R5) and the probability density functions (PDF) of the time interval between successive reversals are found to follow Poisson statistics as in the 3-D system. It is further observed that the bulk temperature fluctuation increases significantly and its PDF changes from exponential to Gaussian as ${\it\Gamma}$ decreases. The influences of geometric confinement on the global heat transport are also investigated. The measured Nu–Ra relationship suggests that, as the lateral aspect ratio decreases, the relative weight of the boundary layer contribution in the global heat transport increases compared to that from the bulk. These results demonstrate that in the quasi-2-D geometry, geometric confinement has strong effects on both the global and local properties in turbulent convective flows, which are very different from the previous findings in 3-D and true 2-D systems.


2012 ◽  
Vol 472-475 ◽  
pp. 1283-1288 ◽  
Author(s):  
Chen Hui Zheng ◽  
Chang Feng Li ◽  
Hua Hong Jiang

In this study, the Reynolds-Averaged-Navier-Stokes (RANS) model combined with the Cross Viscosity Equation is used, applied to the soft turbulence regime (Ra =5×105~4×107) and hard turbulence regime (Ra>4×107) of Rayleigh-Bénard convection (RBC). The relation curves between heat transport (Nusselt number) and other parameters, as well as flow pattern changes of RBC are obtained for the cases with different Rayleigh number and concentration of the polymer additive. The simulations show that the presence of polymer additive can lead to an enhancement of the heat transfer with larger effect in the hard turbulence regime than those in the soft turbulence regime. It is also shown that in the soft turbulence regime the reversal cycles are shorter than in hard turbulence regime. The symmetric vortices in the diagonal corner of enclosed space shrink and the velocities of large-scale circulation (LSC) increase accordingly.


2002 ◽  
Vol 469 ◽  
pp. 1-12 ◽  
Author(s):  
A. S. FLEISCHER ◽  
R. J. GOLDSTEIN

High-pressure gases are used to study high-Rayleigh-number Rayleigh–Bénard convection in cylindrical horizontal enclosures. The Nusselt–Rayleigh heat transfer relationship is investigated for 1×109 < Ra < 1.7×1012. Schlieren video images of the flow field are recorded through optical viewports in the pressure vessel. The data set is well correlated by Nu = 0.071Ra0.328. The schlieren results confirm the existence of a large-scale flow that periodically interrupts the ascending and descending plumes. The intensity of both the plumes and the large-scale flow increases with Rayleigh number.


2011 ◽  
Vol 676 ◽  
pp. 1-4 ◽  
Author(s):  
KE-QING XIA

How internal flow states can influence the global transport properties in a turbulent system has always been an intriguing question. Weiss & Ahlers (J. Fluid Mech., this issue, vol. 676, 2011, pp. 5–40) have provided an example by measuring the instantaneous Nusselt number in turbulent Rayleigh-Bénard convection and correlating it to the different modes of large-scale flow.


1997 ◽  
Vol 55 (5) ◽  
pp. R4877-R4880 ◽  
Author(s):  
Igor Aranson ◽  
Michel Assenheimer ◽  
Victor Steinberg ◽  
Lev S. Tsimring

Sign in / Sign up

Export Citation Format

Share Document