Three-dimensional MHD duct flows with strong transverse magnetic fields. Part 2. Variable-area rectangular ducts with conducting sides

1971 ◽  
Vol 46 (4) ◽  
pp. 657-684 ◽  
Author(s):  
J. S. Walker ◽  
G. S. S. Ludford ◽  
J. C. R. Hunt

In this paper the general analysis, developed in part 1, of three-dimensional duct flows subject to a strong transverse magnetic field is used to examine the flow in diverging ducts of rectangular cross-section. It is found that, with the magnetic field parallel to one pair of the sides, the essential problem is the analysis of the boundary layers on these (side) walls. Assuming that they are highly conducting and that those perpendicular to the magnetic field are non-conducting, the flow is found to have some interesting properties: if the top and bottom walls diverge, the side walls remaining parallel, then an O(1) velocity overshoot occurs in the side-wall boundary layers; but if the top and bottom walls remain parallel, the side walls diverging, these boundary layers have conventional velocity profiles. The most interesting flows occur when both pairs of walls diverge, when it is found that large, 0(M½), velocities occur in the side-wall boundary layers, either in the direction of the mean flow or in the reverse direction, depending on the geometry of the duct and the external electric circuit!The mathematical analysis involves the solution of a formidable integral equation which, however, does have analytic solutions for some special types of duct.

1972 ◽  
Vol 56 (1) ◽  
pp. 121-141 ◽  
Author(s):  
J. S. Walker ◽  
G. S. S. Ludford ◽  
J. C. R. Hunt

The general analysis developed in Parts 1 and 2 of three-dimensional duct flows subject to a strong transverse magnetic field is used to examine the flow in diverging ducts of rectangular cross-section, the walls of which are electrically non-conducting. A dramatically different flow is found in this case from that studied in Part 2, where the side walls parallel to the magnetic field were highly conducting. Now it is found that the core velocity normalized with respect to the mean velocity is of O(M−½) while the velocity in the side-wall boundary layers is of O(M½), so that these boundary layers carry most of the flow. The problem of entry is solved by analysing the change from fully developed Hartmann flow in a rectangular duct to the flow in the diverging duct. It is found that the disturbance in the upstream duct decays exponentially. The analysis of the side-wall boundary layers is more difficult than that in Part 1 on account of the different boundary conditions and requires the solution of two coupled integro-differential equations. Numerical solutions are obtained for a duct whose width increases linearly in the flow direction.


1994 ◽  
Vol 116 (2) ◽  
pp. 298-302
Author(s):  
N. Ma ◽  
T. J. Moon ◽  
J. S. Walker

This paper treats a liquid-metal flow in a rectangular duct with a strong, uniform, transverse magnetic field and with thin metal walls, except for two finite-length, perfectly conducting electrodes in the side walls, which are parallel to the magnetic field. There are large velocities inside the boundary layers adjacent to the thin metal side walls, but not inside the layers adjacent to the electrodes. Upstream and downstream of the electrodes, a significant fraction of the total flow leaves and enters the side-wall boundary layers, respectively. For the particular duct treated here, the fully developed side layers, which carry 38.8 percent of the total flow, are realized at a distance of three characteristic lengths from the ends of the electrodes.


2021 ◽  
Vol 62 ◽  
pp. 386-405
Author(s):  
Graham John Weir ◽  
George Chisholm ◽  
Jerome Leveneur

Neodymium magnets were independently discovered in 1984 by General Motors and Sumitomo. Today, they are the strongest type of permanent magnets commercially available. They are the most widely used industrial magnets with many applications, including in hard disk drives, cordless tools and magnetic fasteners. We use a vector potential approach, rather than the more usual magnetic potential approach, to derive the three-dimensional (3D) magnetic field for a neodymium magnet, assuming an idealized block geometry and uniform magnetization. For each field or observation point, the 3D solution involves 24 nondimensional quantities, arising from the eight vertex positions of the magnet and the three components of the magnetic field. The only unknown in the model is the value of magnetization, with all other model quantities defined in terms of field position and magnet location. The longitudinal magnetic field component in the direction of magnetization is bounded everywhere, but discontinuous across the magnet faces parallel to the magnetization direction. The transverse magnetic fields are logarithmically unbounded on approaching a vertex of the magnet.   doi:10.1017/S1446181120000097


1983 ◽  
Vol 105 (4) ◽  
pp. 435-438 ◽  
Author(s):  
T. Motohashi ◽  
R. F. Blackwelder

To study boundary layers in the transitional Reynolds number regime, the useful spanwise and streamwise extent of wind tunnels is often limited by turbulent fluid emanating from the side walls. Some or all of the turbulent fluid can be removed by sucking fluid out at the corners, as suggested by Amini [1]. It is shown that by optimizing the suction slot width, the side wall contamination can be dramatically decreased without a concomitant three-dimensional distortion of the laminar boundary layer.


1968 ◽  
Vol 32 (4) ◽  
pp. 737-764 ◽  
Author(s):  
R. Hide

An incompressible fluid fills a container of fixed shape and size and of uniform cross-section in the (x, y)-plane, themrigid side walls and the two rigid end walls being in contact with the fluid. Here (x, y, z) are the Cartesian co-ordinates of a general point in the frame of reference in which the container is stationary. Fluid is withdrawn from the container atQcm3/sec via certain permeable parts of the side walls and replaced at the same steady rate via other permeable parts of the side walls. As, by hypothesis, the vorticity of the entering and leaving fluid relative to the container is zero, the concomitant fluid motion within the container, Eulerian velocityu= −∇ϕ − ∇ ×A, is irrotational when the container is stationary in an inertial frame. The present paper is concerned with the effects onuof uniform rotation of the whole system with angular velocity Ω about thez-axis when the normal component ofuon the side walls is independent ofz.In the simplest conceivable case,D≡zu−zlis infinite (butD/Qremains finite). End effects are then negligible anduis everywhere independent ofz.The solenoidal component ofu, − ∇ ×A, corresponds tojgyres, one for each of thejirreducible sets of circuits across which the net flow of fluid does not vanish that can be drawn within them-ply connected region bounded by the side walls. While ∇ϕ, which satisfies ∇2ϕ = 0, depends onQbut not on Ω,jandv(the coefficient of kinematic viscosity), ∇ ×Adepends on all these quantities but vanishes identically whenjΩ = 0. WhenjΩ ≠ 0 butv→ 0, ∇2A+ 2Ω, the absolute vorticity, tends to zero everywhere except in certain singular regions near the bounding surfaces, where boundary layers form.End effects cannot be ignored whenDis finite. WhenDis independent ofxandyand equal toD0(say) and Ω is sufficiently large for the boundary layers on the end walls to be of the Ekman type, 95% thickness δ = 3(v/Ω)½(δ [Lt ]D0), the end effects that then arise are only confined to these boundary layers whenj= 0. Whenj≠ 0 boundary-layer suction influences the flow everywhere; thus ∇2Aand ∇ϕ (but not ∇ ×A) are reduced to zero in the main body of the fluid, the regions of non-zero ∇ϕ and ∇2Abeing the Ekman boundary layers on the end walls and boundary layers of another type, 95% thickness δs(typically greater than δ), on the side walls. A theoretical analysis of the structure of these boundary layers shows that non-linear effects, though unimportant in the end-wall boundary layers, can be significant and even dominant in the side-wall boundary layers. The analysis of an axisymmetric system, whose side walls are two coaxial cylinders, suggests an approximate expression for Δs. WhenDis not everywhere independent ofxandy,non-viscous end effects arise which produce relative vorticity in the main body of the fluid even whenj= 0.Experiments using a variety of source-sink distribution generally confirm the results of the theory, show that instabilities of various kinds may occur under certain circumstances, and suggest several promising lines for future work.


1976 ◽  
Vol 43 (2) ◽  
pp. 205-208 ◽  
Author(s):  
P. Puri ◽  
P. K. Kulshrestha

The three-dimensional flow of a viscous fluid in the presence of the transverse magnetic field past an infinite porous plate moving with a time-dependent velocity in a rotating medium is investigated. An exact solution is found by using the Laplace transform method. The order of Stokes, Ekman, and Stokes-Rayleigh layers arising in the problem are derived and the influence of the magnetic field and suction (blowing) is studied. The behavior of the drag and lateral stress on the plate is discussed and the power input required to keep the plate in motion calculated. It is also found that a normal solution exists at the resonant frequency for the problem investigated here.


1965 ◽  
Vol 21 (4) ◽  
pp. 577-590 ◽  
Author(s):  
J. C. R. Hunt

The paper presents an analysis of laminar motion of a conducting liquid in a rectangular duct under a uniform transverse magnetic field. The effects of the duct having conducting walls are investigated. Exact solutions are obtained for two cases, (i) perfectly conducting walls perpendicular to the field and thin walls of arbitrary conductivity parallel to the field, and (ii) non-conducting walls parallel to the field and thin walls of arbitrary conductivity perpendicular to the field.The boundary layers on the walls parallel to the field are studied in case (i) and it is found that at high Hartmann number (M), large positive and negative velocities of order MVc are induced, where Vc is the velocity of the core. It is suggested that contrary to previous assumptions the magnetic field may in some cases have a destabilizing effect on flow in ducts.


2014 ◽  
Vol 757 ◽  
pp. 33-56 ◽  
Author(s):  
Xuan Zhang ◽  
Oleg Zikanov

AbstractMixed convection in a horizontal duct with imposed transverse horizontal magnetic field is studied using direct numerical simulations (DNS) and linear stability analysis. The duct’s walls are electrically insulated and thermally insulated with the exception of the bottom wall, at which constant-rate heating is applied. The focus of the study is on flows at high Hartmann ($\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Ha}\le 800$) and Grashof ($\mathit{Gr}\le 10^9$) numbers. It is found that, while conventional turbulence is fully suppressed, the natural convection mechanism leads to the development of large-scale coherent structures. Two types of flows are found. One is the ‘low-$\mathit{Gr}$’ regime, in which the structures are rolls aligned with the magnetic field and velocity and temperature fields are nearly uniform along the magnetic field lines outside of the boundary layers. Another is the ‘high-$\mathit{Gr}$’ regime, in which the convection appears as a combination of similar rolls oriented along the magnetic field lines and streamwise-oriented rolls. In this case, velocity and temperature distributions are anisotropic, but three-dimensional.


Author(s):  
Ali J. Chamkha ◽  
Muneer A. Ismael

The present study investigates mixed convection inside a Cu–water nanofluid filled trapezoidal cavity under the effect of a constant magnetic field. The mixed convection is achieved by the action of lid-driving of the right hot inclined side wall in the aiding or the opposing direction. The left inclined side wall is fixed and kept isothermal at a cold temperature. The horizontal top and bottom walls are fixed and thermally insulated. The magnetic field is imposed horizontally. The problem is formulated using the stream function-vorticity procedure and solved numerically using an efficient upwind finite-difference method. The studied parameters are: the Richardson number Ri = (0.01–10), the Hartman number Ha = (0–100), the volume fraction of Cu nanoparticles φ = (0–0.05), and the inclination angle of side walls Φ = (66 deg, 70 deg, 80 deg). The results have shown that the suppression effect of the magnetic field for the aiding case is greater than that for the opposing case. Meanwhile, the enhancement of the Nusselt number due to the presence of the Cu nanoparticles is greater for opposing lid-driven case.


2020 ◽  
pp. 1-20
Author(s):  
GRAHAM WEIR ◽  
GEORGE CHISHOLM ◽  
JEROME LEVENEUR

Neodymium magnets were independently discovered in 1984 by General Motors and Sumitomo. Today, they are the strongest type of permanent magnets commercially available. They are the most widely used industrial magnets with many applications, including in hard disk drives, cordless tools and magnetic fasteners. We use a vector potential approach, rather than the more usual magnetic potential approach, to derive the three-dimensional (3D) magnetic field for a neodymium magnet, assuming an idealized block geometry and uniform magnetization. For each field or observation point, the 3D solution involves 24 nondimensional quantities, arising from the eight vertex positions of the magnet and the three components of the magnetic field. The only unknown in the model is the value of magnetization, with all other model quantities defined in terms of field position and magnet location. The longitudinal magnetic field component in the direction of magnetization is bounded everywhere, but discontinuous across the magnet faces parallel to the magnetization direction. The transverse magnetic fields are logarithmically unbounded on approaching a vertex of the magnet.


Sign in / Sign up

Export Citation Format

Share Document