Burgers turbulence model for a channel flow

1971 ◽  
Vol 47 (2) ◽  
pp. 321-335 ◽  
Author(s):  
Jon Lee

The truncated Burgers models have a unique equilibrium state which is defined continuously for all the Reynolds numbers and attainable from a realizable class of initial disturbances. Hence, they represent a sequence of convergent approximations to the original (untruncated) Burgers problem. We have pointed out that consideration of certain degenerate equilibrium states can lead to the successive turbulence-turbulence transitions and finite-jump transitions that were suggested by Case & Chiu. As a prototype of the Navier–Stokes equations, Burgers model can simulate the initial-value type of numerical integration of the Fourier amplitude equations for a turbulent channel flow. Thus, the Burgers model dynamics display certain idiosyncrasies of the actual channel flow problem described by a truncated set of Fourier amplitude equations, which includes only a modest number of modes due to the limited capability of the computer at hand.

2011 ◽  
Vol 680 ◽  
pp. 67-79 ◽  
Author(s):  
NIKOLAY NIKITIN

The four-dimensional (4D) incompressible Navier–Stokes equations are solved numerically for the plane channel geometry. The fourth spatial coordinate is introduced formally to be homogeneous and mathematically orthogonal to the others, similar to the spanwise coordinate. Exponential growth of small 4D perturbations superimposed onto 3D turbulent solutions was observed in the Reynolds number range from Re = 4000 to Re = 10000. The growth rate of small 4D perturbations expressed in wall units was found to be λ+4D = 0.016 independent of Reynolds number. Nonlinear evolution of 4D perturbations leads either to attenuation of turbulence and relaminarization or to establishment of a self-sustained 4D turbulent solution (4D turbulent flow). Both results on flow evolution were obtained at the lowest Reynolds number, depending on the grid resolution, pointing to the proximity of Re = 4000 as the critical Reynolds number for 4D turbulence. Self-sustained 4D turbulence appeared to be less intense compared with 3D turbulence in terms of mean wall friction, which is about 55% of that predicted by the empirical Dean law for turbulent channel flow at all Reynolds numbers considered. Thus, the law of resistance of 4D turbulent channel flow can be expressed as Cf = 0.04Re−0.25.


2012 ◽  
Vol 694 ◽  
pp. 332-351 ◽  
Author(s):  
Fettah Aldudak ◽  
Martin Oberlack

AbstractIn order to analyse the geometric structure of turbulent flow patterns and their statistics for various scalar fields we adopt the dissipation element (DE) approach and apply it to turbulent channel flow by employing direct numerical simulations (DNS) of the Navier–Stokes equations. Gradient trajectories starting from any point in a scalar field $\phi (x, y, z, t)$ in the directions of ascending and descending scalar gradients will always reach an extremum, i.e. a minimum or a maximum point, where $\boldsymbol{\nabla} \phi = 0$. The set of all points and trajectories belonging to the same pair of extremal points defines a dissipation element. Extending previous DE approaches, which were only applied to homogeneous turbulence, we here focus on exploring the influence of solid walls on the dissipation element distribution. Employing group-theoretical methods and known symmetries of Navier–Stokes equations, we observe for the core region of the flow, i.e. the region beyond the buffer layer, that the probability distribution function (p.d.f.) of the DE length exhibits an invariant functional form, in other words, self-similar behaviour with respect to the wall distance. This is further augmented by the scaling behaviour of the mean DE length scale which shows a linear scaling with the wall distance. The known proportionality of the mean DE length and the Taylor length scale is also revisited. Utilizing a geometric analogy we give the number of DE elements as a function of the wall distance. Further, it is observed that the DE p.d.f. is rather insensitive, i.e. invariant with respect both to the Reynolds number and the actual scalar $\phi $ which has been employed for the analysis. In fact, a very remarkable degree of isotropy is observed for the DE p.d.f. in regions of high shear. This is in stark contrast to classical Kolmogorov scaling laws which usually exhibit a strong dependence on quantities such as shear, anisotropy and Reynolds number. In addition, Kolmogorov’s scaling behaviour is in many cases only visible for very large Reynolds numbers. This is rather different in the present DE approach which applies also for low Reynolds numbers. Moreover, we show that the DE p.d.f. agrees very well with the log-normal distribution and derive a log-normal p.d.f. model taking into account the wall-normal dependence. Finally, the conditional mean scalar differences of the turbulent kinetic energy at the extremal points of DE are examined. We present a power law with scaling exponent of $2/ 3$ known from Kolmogorov’s hypothesis for the centre of the channel and a logarithmic law near the wall.


1987 ◽  
Vol 177 ◽  
pp. 133-166 ◽  
Author(s):  
John Kim ◽  
Parviz Moin ◽  
Robert Moser

A direct numerical simulation of a turbulent channel flow is performed. The unsteady Navier-Stokes equations are solved numerically at a Reynolds number of 3300, based on the mean centreline velocity and channel half-width, with about 4 × 106 grid points (192 × 129 × 160 in x, y, z). All essential turbulence scales are resolved on the computational grid and no subgrid model is used. A large number of turbulence statistics are computed and compared with the existing experimental data at comparable Reynolds numbers. Agreements as well as discrepancies are discussed in detail. Particular attention is given to the behaviour of turbulence correlations near the wall. In addition, a number of statistical correlations which are complementary to the existing experimental data are reported for the first time.


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


1976 ◽  
Vol 73 (1) ◽  
pp. 153-164 ◽  
Author(s):  
P.-A. Mackrodt

The linear stability of Hagen-Poiseuille flow (Poiseuille pipe flow) with superimposed rigid rotation against small three-dimensional disturbances is examined at finite and infinite axial Reynolds numbers. The neutral curve, which is obtained by numerical solution of the system of perturbation equations (derived from the Navier-Stokes equations), has been confirmed for finite axial Reynolds numbers by a few simple experiments. The results suggest that, at high axial Reynolds numbers, the amount of rotation required for destabilization could be small enough to have escaped notice in experiments on the transition to turbulence in (nominally) non-rotating pipe flow.


2010 ◽  
Vol 656 ◽  
pp. 189-204 ◽  
Author(s):  
ILIA V. ROISMAN

This theoretical study is devoted to description of fluid flow and heat transfer in a spreading viscous drop with phase transition. A similarity solution for the combined full Navier–Stokes equations and energy equation for the expanding lamella generated by drop impact is obtained for a general case of oblique drop impact with high Weber and Reynolds numbers. The theory is applicable to the analysis of the phenomena of drop solidification, target melting and film boiling. The theoretical predictions for the contact temperature at the substrate surface agree well with the existing experimental data.


Author(s):  
Guillermo E. Ovando ◽  
Juan C. Prince ◽  
Sandy L. Ovando

Fluid dynamics for a Newtonian fluid in the absence of body forces in a two-dimensional cavity with top and bottom curved walls was studied numerically. The vertical walls are fixed and the curved walls are in motion. The Navier-Stokes equations were solved using the finite element method combined with the operator splitting scheme. We analyzed the behaviour of the velocity fields, the vorticity fields and the velocity profiles of the fluid inside the cavity. The analysis was carried out for two different Reynolds numbers of 50 and 500 with two ratios (R = 1, −1) of the top to the bottom curved lid speed. For these values of parameters the flow is characterized by vortex formation inside the cavity. The spatial symmetry on the flow patterns are also investigated. We found that when the velocities of the top and bottom walls have opposite direction only one cell is formed in the central part of the cavity; however when the velocities of the top and bottom walls have the same direction the vortex formation inside the cavity is more complex.


Sign in / Sign up

Export Citation Format

Share Document