Quantitative measurements of three-dim ensional structures in the wake of a circular cylinder

1994 ◽  
Vol 270 ◽  
pp. 277-296 ◽  
Author(s):  
Hussein Mansy ◽  
Pan-Mei Yang ◽  
David R. Williams

The fine scale three-dimensional structures usually associated with streamwise vortices in the near wake of a circular cylinder have been studied at Reynolds numbers ranging from 170 to 2200. Spatially continuous velocity measurements along lines parallel to the cylinder axis were obtained with a scanning laser anemometer. To detect the streamwise vortices in the amplitude modulated velocity field, it was necessary to develop a spatial decomposition technique to split the total flow into a primary flow component and a secondary flow component. The primary flow is comprised of the mean flow and Strouhal vortices, while the secondary flow is the result of the three-dimensional streamwise vortices that are the essence of transition to turbulence. The three-dimensional flow amplitude increases in the primary vortex formation region, then saturates shortly after the maximum amplitude in the primary flow is reached. In the near-wake region the wavelength decreases approximately like Re−0.5, but increases with downstream distance. A discontinuous increase in wavelength occurs below Re = 300 suggesting a fundamental change in the character of the three-dimensional flow. At downstream distances (x/D = 10-20), the spanwise wavelength decreases from 1.42D to 1.03D as the Reynolds number increases from 300 to 1200.

2011 ◽  
Vol 23 (6) ◽  
pp. 064106 ◽  
Author(s):  
Nicolas Kanaris ◽  
Dimokratis Grigoriadis ◽  
Stavros Kassinos

2009 ◽  
Vol 643 ◽  
pp. 349-362 ◽  
Author(s):  
DAVID LO JACONO ◽  
JUSTIN S. LEONTINI ◽  
MARK C. THOMPSON ◽  
JOHN SHERIDAN

A study of the flow past an oscillatory rotating cylinder has been conducted, where the frequency of oscillation has been matched to the natural frequency of the vortex street generated in the wake of a stationary cylinder, at Reynolds number 300. The focus is on the wake transition to three-dimensional flow and, in particular, the changes induced in this transition by the addition of the oscillatory rotation. Using Floquet stability analysis, it is found that the fine-scale three-dimensional mode that typically dominates the wake at a Reynolds number beyond that at the second transition to three-dimensional flow (referred to as mode B) is suppressed for amplitudes of rotation beyond a critical amplitude, in agreement with past studies. However, the rotation does not suppress the development of three-dimensionality completely, as other modes are discovered that would lead to three-dimensional flow. In particular, the longer-wavelength mode that leads the three-dimensional transition in the wake of a stationary cylinder (referred to as mode A) is left essentially unaffected at low amplitudes of rotation. At higher amplitudes of oscillation, mode A is also suppressed as the two-dimensional near wake changes in character from a single- to a double-row wake; however, another mode is predicted to render the flow three-dimensional, dubbed mode D (for double row). This mode has the same spatio-temporal symmetries as mode A.


2016 ◽  
Vol 798 ◽  
pp. 371-397 ◽  
Author(s):  
José P. Gallardo ◽  
Helge I. Andersson ◽  
Bjørnar Pettersen

We investigate the early development of instabilities in the oscillatory viscous flow past cylinders with elliptic cross-sections using three-dimensional direct numerical simulations. This is a classical hydrodynamic problem for circular cylinders, but other configurations have received only marginal attention. Computed results for some different aspect ratios ${\it\Lambda}$ from 1 : 1 to 1 : 3, all with the major axis of the ellipse aligned in the main flow direction, show good qualitative agreement with Hall’s stability theory (J. Fluid Mech., vol. 146, 1984, pp. 347–367), which predicts a cusp-shaped curve for the onset of the primary instability. The three-dimensional flow structures for aspect ratios larger than 2 : 3 resemble those of a circular cylinder, whereas the elliptical cross-section with the lowest aspect ratio of 1 : 3 exhibits oblate rather than tubular three-dimensional flow structures as well as a pair of counter-rotating spanwise vortices which emerges near the tips of the ellipse. Contrary to a circular cylinder, instabilities for an elliptic cylinder with sufficiently high eccentricity emerge from four rather than two different locations in accordance with the Hall theory.


2001 ◽  
Vol 2001 (0) ◽  
pp. 217
Author(s):  
Yasutake HARAMOTO ◽  
Tomo KINJYO ◽  
Kazuyoshi MATSUZAKI ◽  
Mizue MUNEKATA ◽  
Hideki OHBA

2004 ◽  
Vol 13 (2) ◽  
pp. 127-132 ◽  
Author(s):  
Mitsuru Shingai ◽  
Yasutake Haramoto ◽  
Kazuyoshi Matsuzaki ◽  
Mizue Munekata ◽  
Hideki Ohba

Author(s):  
X. Liu ◽  
J. S. Marshall

A computational study is reported that examines the transient growth of three-dimensional flow features for nominally parallel vortex-cylinder interaction problems. We consider a helical vortex with small-amplitude perturbations that is advected onto a circular cylinder whose axis is parallel to the nominal vortex axis. The study assesses the applicability of the two-dimensional flow assumption for parallel vortex-body interaction problems in which the body impinges on the vortex core. The computations are performed using an unstructured finite-volume method for an incompressible flow, with periodic boundary conditions along the cylinder axis. Growth of three-dimensional flow features is quantified by use of a proper-orthogonal decomposition of the Fourier-transformed velocity and vorticity fields in the cylinder azimuthal and axial directions. The interaction is examined for different axial wavelengths and amplitudes of the initial helical waves on the vortex core, and the results for cylinder force are compared to the two-dimensional results. The degree of perturbation amplification as the vortex approaches the cylinder is quantified and shown to be mostly dependent on the dominant axial wavenumber of the perturbation. The perturbation amplification is observed to be greatest for perturbations with axial wavelength of about 1.5 times the cylinder diameter.


1968 ◽  
Vol 90 (3) ◽  
pp. 237-243 ◽  
Author(s):  
Y. Senoo ◽  
M. Yamaguchi ◽  
M. Nishi

In order to visualize the three-dimensional flow in the impeller and the vaneless diffuser of a centrifugal compressor, water is used as the working fluid and streak lines of colored water are photographed and examined. The test is made at an extremely low speed so that streak lines do not diffuse due to turbulent mixing. The streak lines clearly demonstrate several types of secondary flow, some of which agree with what have been speculated to exist in actual compressors. Most of observed secondary flow patterns are qualitatively understandable with existing theories.


Sign in / Sign up

Export Citation Format

Share Document