scholarly journals Seismic Refraction and Reflection Measurements at “Byrd” Station, Antarctica

1973 ◽  
Vol 12 (64) ◽  
pp. 101-111 ◽  
Author(s):  
Heinz Kohnen ◽  
Charles R. Bentley

Abstract Seismic refraction and reflection shooting was carried out along three profiles about 10 km long, angled 60° to one another, near “Byrd” station, Antarctica, during the 1970–71 field season. No dependence of velocity upon azimuth was found, but velocities at 200 or 300 m depth were slightly greater than at a site 30 km away where measurements were made in 1958. The difference can probably be attributed to different ice fabrics arising from a 50% difference in snow accumulation rates at the two sites. The velocity depth and density–velocity functions at the two sites are also significantly different, but close agreement was found at each site between the depths to significant changes in the velocity gradient and the depths of fundamental change in the densification process. Such agreement may permit density–depth curves, and consequently accumulation rates, to be measured by seismic refraction shooting alone. The reflection shooting on a common reflection-point profile led to a good determination of mean velocity through the ice as a function of angle of incidence. The results agree closely with similar measurements at the 1958 site, and with an anisotropic model based on glaciological and sonic logging observations in the deep drill hole. The mean vertical velocity of 3.90–3.93 km/s through the solid ice is about 2% higher than has commonly been used for determinations of ice thickness from seismic reflection shooting.

1973 ◽  
Vol 12 (64) ◽  
pp. 101-111 ◽  
Author(s):  
Heinz Kohnen ◽  
Charles R. Bentley

AbstractSeismic refraction and reflection shooting was carried out along three profiles about 10 km long, angled 60° to one another, near “Byrd” station, Antarctica, during the 1970–71 field season. No dependence of velocity upon azimuth was found, but velocities at 200 or 300 m depth were slightly greater than at a site 30 km away where measurements were made in 1958. The difference can probably be attributed to different ice fabrics arising from a 50% difference in snow accumulation rates at the two sites. The velocity depth and density–velocity functions at the two sites are also significantly different, but close agreement was found at each site between the depths to significant changes in the velocity gradient and the depths of fundamental change in the densification process. Such agreement may permit density–depth curves, and consequently accumulation rates, to be measured by seismic refraction shooting alone.The reflection shooting on a common reflection-point profile led to a good determination of mean velocity through the ice as a function of angle of incidence. The results agree closely with similar measurements at the 1958 site, and with an anisotropic model based on glaciological and sonic logging observations in the deep drill hole. The mean vertical velocity of 3.90–3.93 km/s through the solid ice is about 2% higher than has commonly been used for determinations of ice thickness from seismic reflection shooting.


2021 ◽  
Vol 3 ◽  
Author(s):  
Travis Nielson ◽  
John Bradford ◽  
W. Steven Holbrook ◽  
Mark Seyfried

In the northern hemisphere within snow-dominated mountainous watersheds north-facing slopes are commonly more deeply weathered than south-facing slopes. This has been attributed to a more persistent snowpack on the north facing aspects. A persistent snowpack releases its water into the subsurface in a single large pulse, which propagates the water deeper into the subsurface than the series of small pulses characteristic of the intermittent snowpack on south-facing slopes. Johnston Draw is an east-draining catchment in the Reynolds Creek Critical Zone Observatory, Idaho that spans a 300 m elevation gradient. The north-facing slope hosts a persistent snowpack that increases in volume up drainage, while the south-facing slope has intermittent snowpack throughout the drainage. We hypothesize that the largest difference in weathering depth between the two aspects will occur where the difference in snow accumulation between the aspects is also greatest. To test this hypothesis, we conducted four seismic refraction tomography surveys within Johnston Draw from inlet to outlet and perpendicular to drainage direction. From these measurements, we calculate the weathering zone thickness from the P-wave velocity profiles. We conclude that the maximum difference in weathering between aspects occurs ¾ of the way up the drainage from the outlet, where the difference in snow accumulation is highest. Above and below this point, the subsurface is more equally weathered and the snow accumulations are more similar. We also observed that the thickness of the weathering zone increased with decreasing elevation and interpret this to be related to the observed increase soil moisture at lower elevations. Our observations support the hypothesis that deeper snow accumulation leads to deeper weathering when all other variables are held equal. One caveat is the possibility that the denser vegetation contributes to deeper weathering on north-facing slopes via soil retention or higher rates of biological weathering.


2002 ◽  
Vol 35 ◽  
pp. 102-106 ◽  
Author(s):  
Gordon S. Hamilton

AbstractSnow-accumulation rates and rates of ice-thickness change (mass balance) are studied at several sites on Siple Dome,West Antarctica. Accumulation rates are derived from analyses of gross beta radioactivity in shallow firn cores located along a 60 km transect spanning both flanks and the crest of the dome. There is a north–south gradient in snow-accumulation rate across the dome that is consistent with earlier radar mapping of internal stratigraphy. Orographic processes probably control this distribution. Mass balance is inferred from the difference between global positioning system (GPS)-derived vertical velocities and snow-accumulation rates for sites close to the firn-core locations. Results indicate that there is virtually no net thickness change at four of the five sites. the exception is at the northernmost site where a small amount of thinning is detected, that appears to be inconsistent with other studies. A possible cause of this anomalous thinning is recent retreat of the grounding line of Ice Stream D.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Jean-Luc Menet

The implantation of wind turbines generally follows a wind potential study which is made using specific numerical tools; the generated expenses are only acceptable for great projects. The purpose of the present paper is to propose a simplified methodology for the evaluation of the wind potential, following three successive steps for the determination of (i) the mean velocity, either directly or by the use of the most occurrence velocity (MOV); (ii) the velocity distribution coming from the single knowledge of the mean velocity by the use of a Rayleigh distribution and a Davenport-Harris law; (iii) an appropriate approximation of the characteristic curve of the turbine, coming from only two technical data. These last two steps allow calculating directly the electric delivered energy for the considered wind turbine. This methodology, called the SWEPT approach, can be easily implemented in a single worksheet. The results returned by the SWEPT tool are of the same order of magnitude than those given by the classical commercial tools. Moreover, everybody, even a “neophyte,” can use this methodology to obtain a first estimation of the wind potential of a site considering a given wind turbine, on the basis of very few general data.


1995 ◽  
Vol 10 (2) ◽  
pp. 175-180 ◽  
Author(s):  
J. J. Lowe ◽  
G. R. Coope ◽  
C. Sheldrick ◽  
D. D. Harkness ◽  
M. J. C. Walker

2001 ◽  
Vol 15 (17n19) ◽  
pp. 683-687
Author(s):  
A. SILVA-CASTILLO ◽  
F. PEREZ-RODRIGUEZ

We have applied the 45° reflectometry for the first time to study exciton-polaritons in quantum wells. The 45° reflectometry is a new polarization-modulation technique, which is based on the measurement of the difference [Formula: see text] between the p-polarization reflectivity (Rp) and the squared s-polarization reflectivity [Formula: see text] at an angle of incidence of 45°. We show that [Formula: see text] spectra may provide qualitatively new information on the exciton-polariton modes in a quantum well. These optical spectra turn out to be very sensitive to the zeros of the dielectric function along the quantum-well growth direction and, therefore, allow to identify the resonances associated with the Z exciton-polariton mode. We demonstrate that 45° reflectometry could be a powerful tool for studying Z exciton-polariton modes in near-surface quantum wells, which are difficult to observe in simple spectra of reflectivity Rp


2021 ◽  
Author(s):  
Pete D. Akers ◽  
Joël Savarino ◽  
Nicolas Caillon ◽  
Mark Curran ◽  
Tas Van Ommen

<p>Precise Antarctic snow accumulation estimates are needed to understand past and future changes in global sea levels, but standard reconstructions using water isotopes suffer from competing isotopic effects external to accumulation. We present here an alternative accumulation proxy based on the post-depositional photolytic fractionation of nitrogen isotopes (d<sup>15</sup>N) in nitrate. On the high plateau of East Antarctica, sunlight penetrating the uppermost snow layers converts snow-borne nitrate into nitrogen oxide gas that can be lost to the atmosphere. This nitrate loss favors <sup>14</sup>NO<sub>3</sub><sup>-</sup> over <sup>15</sup>NO<sub>3</sub><sup>-</sup>, and thus the d<sup>15</sup>N of nitrate remaining in the snow will steadily increase until the nitrate is eventually buried beneath the reach of light. Because the duration of time until burial is dependent upon the rate of net snow accumulation, sites with lower accumulation rates have a longer burial wait and thus higher d<sup>15</sup>N values. A linear relationship (r<sup>2</sup> = 0.86) between d<sup>15</sup>N and net accumulation<sup>-1</sup> is calculated from over 120 samples representing 105 sites spanning East Antarctica. These sites largely encompass the full range of snow accumulation rates observed in East Antarctica, from 25 kg m-<sup>2</sup> yr<sup>-1</sup> at deep interior sites to >400 kg m-<sup>2</sup> yr<sup>-1</sup> at near coastal sites. We apply this relationship as a transfer function to an Aurora Basin ice core to produce a 700-year record of accumulation changes. Our nitrate-based estimate compares very well with a parallel reconstruction for Aurora Basin that uses volcanic horizons and ice-penetrating radar. Continued improvements to our database may enable precise independent estimates of millennial-scale accumulation changes using deep ice cores such as EPICA Dome C and Beyond EPICA-Oldest Ice.</p>


2017 ◽  
Author(s):  
Mai Winstrup ◽  
Paul Vallelonga ◽  
Helle A. Kjær ◽  
Tyler J. Fudge ◽  
James E. Lee ◽  
...  

Abstract. We present a 2700-year annually resolved timescale for the Roosevelt Island Climate Evolution (RICE) ice core, and reconstruct a past snow accumulation history for the coastal sector of the Ross Ice Shelf in West Antarctica. The timescale was constructed by identifying annual layers in multiple ice-core impurity records, employing both manual and automated counting approaches, and constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). The maritime setting of Roosevelt Island results in high sulfate influx from sea salts and marine biogenic emissions, which prohibits a routine detection of volcanic eruptions in the ice-core records. This led to the use of non-traditional chronological techniques for validating the timescale: RICE was synchronized to the WAIS Divide ice core, on the WD2014 timescale, using volcanic attribution based on direct measurements of ice-core acidity, as well as records of globally-synchronous, centennial-scale variability in atmospheric methane concentrations. The RICE accumulation history suggests stable values of 0.25 m water equivalent (w.e.) per year until around 1260 CE. Uncertainties in the correction for ice flow thinning of annual layers with depth do not allow a firm conclusion about long-term trends in accumulation rates during this early period but from 1260 CE to the present, accumulation rate trends have been consistently negative. The decrease in accumulation rates has been increasingly rapid over the last centuries, with the decrease since 1950 CE being more than 7 times greater than the average over the last 300 years. The current accumulation rate of 0.22 ± 0.06 m w.e. yr−1 (average since 1950 CE, ±1σ) is 1.49 standard deviations (86th percentile) below the mean of 50-year average accumulation rates observed over the last 2700 years.


2021 ◽  
Author(s):  
Yuzhen Yan ◽  
Nicole E. Spaulding ◽  
Michael L. Bender ◽  
Edward J. Brook ◽  
John A. Higgins ◽  
...  

Abstract. The S27 ice core, drilled in the Allan Hills Blue Ice Area of East Antarctica, is located in Southern Victoria Land ~80 km away from the present-day northern edge of the Ross Ice Shelf. Here, we utilize the reconstructed accumulation rate of S27 covering the Last Interglacial (LIG) period between 129 and 116 thousand years before present (ka) to infer moisture transport into the region. The accumulation rate is based on the ice age-gas age differences calculated from the ice chronology, which is constrained by the stable water isotopes of the ice, and an improved gas chronology based on measurements of oxygen isotopes of O2 in the trapped gases. The peak accumulation rate in S27 occurred at 128.2 ka, near the peak LIG warming in Antarctica. Even the most conservative estimate yields a six-fold increase in the accumulation rate in the LIG, whereas other Antarctic ice cores are typically characterized by a glacial-interglacial difference of a factor of two to three. While part of the increase in S27 accumulation rates must originate from changes in the large-scale atmospheric circulation, additional mechanisms are needed to explain the large changes. We hypothesize that the exceptionally high snow accumulation recorded in S27 reflects open-ocean conditions in the Ross Sea, created by reduced sea ice extent and increased polynya size, and perhaps by a southward retreat of the Ross Ice Shelf relative to its present-day position near the onset of LIG. The proposed ice shelf retreat would also be compatible with a sea-level high stand around 129 ka significantly sourced from West Antarctica. The peak in S27 accumulation rates is transient, suggesting that if the Ross Ice Shelf had indeed retreated during the early LIG, it would have re-advanced by 125 ka.


Author(s):  
David Šimurda ◽  
Martin Luxa ◽  
Pavel Šafařík ◽  
Jaroslav Synáč ◽  
Bartoloměj Rudas

Aerodynamic investigations were performed on planar blade cascades representing two alternative root sections of rotor blades 54″ in length with straight fir-tree root. Each of the variants was designed for different number of blades in the rotor. This paper presents the results of measurements showing the dependency of the kinetic energy loss coefficient and the exit flow angle on the exit isoentropic Mach number and the angle of incidence. Images of the flow fields are also presented. The experimental data is analyzed to assess and document the difference between the two root section designs. Results show that requirement of straight fir tree root leading to high design incidence angles significantly limit operation range. Also in case of root sections with high exit Mach numbers a limit load conditions are an issue. In order to utilize available pressure drop blade cascade throat/pitch ratios should be kept as high as possible which favorites variant with lower number of blades and higher outlet metal angle (relative to axial direction).


Sign in / Sign up

Export Citation Format

Share Document