Trilobite malformations and the fossil record of behavioral asymmetry
Malformations of trilobites are classified as healed injuries, teratological conditions, and pathological conditions. An improved method of recognizing such malformations combines information about the conditions under which cell injury can occur, the processes by which animal tissues react to injury, and trilobite morphology.Study of healed injuries of polymeroid trilobites shows that injuries attributed to sublethal predation tend to be most commonly preserved on the pleural lobes, the posterior half of the body, and the right side. Statistically significant differences in the number of predation scars between the right and left sides is interpreted as evidence of right-left behavioral asymmetry in some predators of trilobites or the trilobites themselves. Asymmetrical, or lateralized, behavior in present-day animals is one manifestation of handedness, and is usually related to a functional lateralization of the nervous system. Evidence of behavioral lateralization in some Paleozoic predators or prey suggests that those organisms also possessed lateralized nervous systems. Right-left differences in preserved predation scars on trilobites date from the Early Cambrian (Olenellus Zone), and are the oldest known evidence of behavioral asymmetry in the fossil record.Other examples of structural or behavioral asymmetry from the fossil record of animals are cited. Lateralization is recognized in representatives of the Arthropoda, Annelida, Bryozoa, Echinodermata, Cnidaria, Mollusca, Chordata, and Conodonta, and in trace fossils.