Parametric instabifity of transverse and Langmuir waves in a plasma

1975 ◽  
Vol 13 (2) ◽  
pp. 317-326 ◽  
Author(s):  
Kai Fong Lee

The parametric excitation of transverse and Langmuir waves by an externally-driven electromagnetic field of frequency (ω0 > 2ωp) in a warm and collisional plasma is studied, using the fluid equations. By an application of the multiple- time-scale perturbation method, the threshold intensity and the growth rate above threshold are obtained. The results are compared with those of Goldman (1969) and Prasad (1968), both of whom worked with a kinetic model.The theory of parametric instabilities in plasmas has been the subject of numerous investigations in recent years. Broadly speaking, the instabilities can be grouped into two categories: those for which the excited waves are purely electrostatic (see e.g. DuBois & Goldman 1965, 1967; Silin 1965; Lee & Su 1966; Jackson 1967; Nishikawa 1968; Kaw & Dawson 1969; Tzoar 1969; Sanmartin 1970; McBride 1970; Perkins & Flick 1971; Fejer & Leer 1972a, b; Bezzerides & Weinstock 1972; DuBois & Goldman 1972), and those for which one of the excited waves is electromagnetic (see e.g. Goldman & Dubois 1965; Montgomery & Alexeff 1966; Chen & Lewak 1970; Bodner & Eddleman 1972; Fejer & Leer 1972b; Lee & Kaw 1972; Forslund et al. 1972).

2017 ◽  
Vol 83 (3) ◽  
Author(s):  
M. Shahmansouri ◽  
H. Alinejad ◽  
M. Tribeche

We examine the excitation of breather structures in a degenerate relativistic plasma consisting of non-extensive electrons and cold ions. For this purpose, the multiple time scale perturbation technique is used to obtain a nonlinear Schrödinger equation (NLSE). We then consider different localized solutions regarding analytical breather solutions of the NLSE, and examine their properties in the frame of the present plasma system, i.e. a degenerate relativistic non-extensive plasma. The results of the present investigation may be useful for the understanding of the basic features of the nonlinear excitations that may occur in dense astrophysical plasmas.


1991 ◽  
Vol 56 (10) ◽  
pp. 2020-2029
Author(s):  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma ◽  
Rudolf Hladina

The authors proposed and treated quantitatively a kinetic model for deposition of epitaxial GaAs layers prepared by reaction of trimethylgallium with arsine in hydrogen atmosphere. The transport of gallium to the surface of the substrate is considered as the controlling process. The influence of the rate of chemical reactions in the gas phase and on the substrate surface on the kinetics of the deposition process is neglected. The calculated dependence of the growth rate of the layers on the conditions of the deposition is in a good agreement with experimental data in the temperature range from 600 to 800°C.


Sign in / Sign up

Export Citation Format

Share Document