Coding over a measurable cardinal

1989 ◽  
Vol 54 (4) ◽  
pp. 1145-1159
Author(s):  
Sy D. Friedman

The purpose of this paper is to extend the coding method (see Beller, Jensen and Welch [82]) into the context of large cardinals.Theorem. Suppose μ is a normal measure on κ in V and 〈 V, A〉 ⊨ ZFC. Then there is a 〈V, A〉-definable forcing for producing a real R such that:(a) V[R] ⊨ ZFC and A is V[R]-definable with parameter R.(b) V[R] = L[μ*, R], where μ* is a normal measure on κ in V[R] extending μ.(c) V ⊨ GCH → is cardinal and cofinality preserving.Corollary. It is consistent that μ is a normal measure, R ⊆ ω is not set-generic over L[μ] and 0+ ∉ L[μ, R].Some other corollaries will be discussed in §4 of the paper.The main difficulty in L[μ]-coding lies in the problem of “stationary restraint”.As in all coding constructions, conditions will be of the form belonging to an initial segment of the cardinals, where p(γ) is a condition for almost disjoint coding into a subset of γ+. In addition for limit cardinals γ in Domain(p), 〈pγ′∣γ′ < γ〉 serves to code pγ.An important restriction in coding arguments is that for inaccessible for only a nonstationary set of γ′ < γ. The reason is that otherwise there are conflicts between the restraint imposed by the different and the need to code extensions of pγ below γ.

1985 ◽  
Vol 50 (2) ◽  
pp. 531-543 ◽  
Author(s):  
Arthur W. Apter

A very fruitful line of research in recent years has been the application of techniques in large cardinals and forcing to the production of models in which certain consequences of the axiom of determinateness (AD) are true or in which certain “AD-like” consequences are true. Numerous results have been published on this subject, among them the papers of Bull and Kleinberg [4], Bull [3], Woodin [15], Mitchell [11], and [1], [2].Another such model will be constructed in this paper. Specifically, the following theorem is proven.Theorem 1. Con(ZFC + There are cardinals κ < δ < λ so that κ is a supercompact limit of supercompact cardinals, λ is a measurable cardinal, and δ is λ supercompact) ⇒ Con(ZF + ℵ1 and ℵ2 are Ramsey cardinals + The ℵn for 3 ≤ n ≤ ω are singular cardinals of cofinality ω each of which carries a Rowbottom filter + ℵω + 1 is a Ramsey cardinal + ℵω + 2 is a measurable cardinal).It is well known that under AD + DC, ℵ2 and ℵ2 are measurable cardinals, the ℵn for 3 ≤ n < ω are singular Jonsson cardinals of cofinality ℵ2, ℵω is a Rowbottom cardinal, and ℵω + 1 and ℵω + 2 are measurable cardinals.The proof of the above theorem will use the existence of normal ultrafilters which satisfy a certain property (*) (to be defined later) and an automorphism argument which draws upon the techniques developed in [9], [2], and [4] but which shows in addition that certain supercompact Prikry partial orderings are in a strong sense “homogeneous”. Before beginning the proof of the theorem, however, we briefly mention some preliminaries.


1985 ◽  
Vol 28 (4) ◽  
pp. 472-473
Author(s):  
Arthur W. Apter

AbstractIn this note, we construct a model with a normal measure U over a measurable cardinal κ so that the cardinal structures of V and Vκ/U are the same ≤2κ. We then show that it is possible to construct a model where this is not true.


1982 ◽  
Vol 5 (4) ◽  
pp. 817-821
Author(s):  
Donald H. Pelletier

The partition property for measures onPℋλwas formulated by analogy with a property which Rowbottom [1] proved was possessed by every normal measure on a measurable cardinal. This property has been studied in [2], [3], and [4]. This note summarizes [5] and [6], which contain results relating the partition property with the extendibility of the measure and with an auxiliary combinatorial property introduced by Menas in [4]. Detailed proofs will appear in [5] and [6].


1979 ◽  
Vol 44 (4) ◽  
pp. 563-565
Author(s):  
Carl F. Morgenstern

It is well known that the first strongly inaccessible cardinal is strictly less than the first weakly compact cardinal which in turn is strictly less than the first Ramsey cardinal, etc. However, once one passes the first measurable cardinal the inequalities are no longer strict. Magidor [3] has shown that the first strongly compact cardinal may be equal to the first measurable cardinal or equal to the first super-compact cardinal (the first supercompact cardinal is strictly larger than the first measurable cardinal). In this note we will indicate how Magidor's methods can be used to show that it is undecidable whether one cardinal (the first strongly compact) is greater than or less than another large cardinal (the first huge cardinal). We assume that the reader is familiar with the ultrapower construction of Scott, as presented in Drake [1] or Kanamori, Reinhardt and Solovay [2].Definition. A cardinal κ is huge (or 1-huge) if there is an elementary embedding j of the universe V into a transitive class M such that M contains the ordinals, is closed under j(κ) sequences, j(κ) > κ and j ↾ Rκ = id. Let κ denote the first huge cardinal, and let λ = j(κ).One can see from easy reflection arguments that κ and λ are inaccessible in V and, in fact, that κ is measurable in V.


1977 ◽  
Vol 42 (4) ◽  
pp. 523-526 ◽  
Author(s):  
J. M. Henle

Beginning with Ramsey's theorem of 1930, combinatorists have been intrigued with the notion of large cardinals satisfying partition relations. Years of research have established the smaller ones, weakly ineffable, Erdös, Jonsson, Rowbottom and Ramsey cardinals to be among the most interesting and important large cardinals in set theory. Recently, cardinals satisfying more powerful infinite-exponent partition relations have been examined with growing interest. This is due not only to their inherent qualities and the fact that they imply the existence of other large cardinals (Kleinberg [2], [3]), but also to the fact that the Axiom of Determinacy (AD) implies the existence of great numbers of such cardinals (Martin [5]).That these properties are more often than not inconsistent with the full Axiom of Choice (Kleinberg [4]) somewhat increases their charm, for the theorems concerning them tend to be a little odd, and their proofs, circumforaneous. The properties are, as far as anyone knows, however, consistent with Dependent Choice (DC).Our basic theorem will be the following: If k > ω and k satisfies k→(k)k then the least cardinal δ such that has a δ-additive, uniform ultrafilter. In addition, if ACω is assumed, we will show that δ is greater than ω, and hence a measurable cardinal. This result will be strengthened somewhat when we prove that for any k, δ, if then .


1971 ◽  
Vol 36 (2) ◽  
pp. 305-308 ◽  
Author(s):  
E. M. Kleinberg ◽  
R. A. Shore

A significant portion of the study of large cardinals in set theory centers around the concept of “partition relation”. To best capture the basic idea here, we introduce the following notation: for x and y sets, κ an infinite cardinal, and γ an ordinal less than κ, we let [x]γ denote the collection of subsets of x of order-type γ and abbreviate with the partition relation for each function F frominto y there exists a subset C of κ of cardinality κ such that (such that for each α < γ) the range of F on [С]γ ([С]α) has cardinality 1. Now although each infinite cardinal κ satisfies the relation for each n and m in ω (F. P. Ramsey [8]), a connection with large cardinals arises when one asks, “For which uncountable κ do we have κ → (κ)2?” Indeed, any uncountable cardinal κ which satisfies κ → (κ)2 is strongly inaccessible and weakly compact (see [9]). As another example one can look at the improvements of Scott's original result to the effect that if there exists a measurable cardinal then there exists a nonconstructible set. Indeed, if κ is a measurable cardinal then κ → (κ)< ω, and as Solovay [11] has shown, if there exists a cardinal κ such that κ → (κ)< ω3 (κ → (ℵ1)< ω, even) then there exists a nonconstructible set of integers.


2005 ◽  
Vol 05 (02) ◽  
pp. 149-166 ◽  
Author(s):  
Sy. D. FRIEDMAN

We lift Jensen's coding method into the context of Woodin cardinals. By a theorem of Woodin, any real which preserves a "strong witness" to Woodinness is set-generic. We show however that there are class-generic reals which are not set-generic but preserve Woodinness, using "weak witnesses".


1984 ◽  
Vol 49 (4) ◽  
pp. 1268-1272
Author(s):  
J.M. Henle ◽  
E.M. Kleinberg ◽  
R.J. Watro

A strong partition cardinal is an uncountable well-ordered cardinal κ such that every partition of [κ]κ (the size κ subsets of κ) into less than κ many pieces has a homogeneous set of size κ. The existence of such cardinals is inconsistent with the axiom of choice, and our work concerning them is carried out in ZF set theory with just dependent choice (DC). The consistency of strong partition cardinals with this weaker theory remains an open question. The axiom of determinacy (AD) implies that a large number of cardinals including ℵ1 have the strong partition property. The hypothesis that AD holds in the inner model of constructible sets built over the real numbers as urelements has important consequences for descriptive set theory, and results concerning strong partition cardinals are often applied in this context. Kechris [4] and Kechris et al. [5] contain further information concerning the relationship between AD and strong partition cardinals.We assume familiarity with the basic results on strong partition cardinals as developed in Kleinberg [6], [7], [8] and Henle [2]. Recall that a strong partition cardinal κ is measurable; in fact every stationary subset of κ is measure one under some normal measure on κ. If μ is a countably additive ultrafilter extending the closed unbounded filter on κ, then the length of the ultrapower [κ]κ under the less than almost everywhere μ ordering is again a measurable cardinal. In §1 below we establish a polarized partition property on these measurable cardinals.


1991 ◽  
Vol 56 (1) ◽  
pp. 108-114
Author(s):  
Dirk R. H. Schlingmann

The core model K was introduced by R. B. Jensen and A. J. Dodd [DoJ]. K is the union of Gödel's constructible universe L together with all mice, i.e., , and K is a transitive model of ZFC + (V = K) + GCH (see [DoJ]). V = K is consistent with the existence of Ramsey cardinals [M], and if cf(α) > ω, V = K is consistent with the existence of α-Erdös cardinals [J]. Let K be Ramsey. Then there is a smallest inner model Wκ of ZFC in which κ is Ramsey. We have Wκ ⊨ V = K and Wκ ⊆ K [M]. The existence of Wκ with is equivalent to the existence of a sharplike mouse on N ⊨ K with N ⊨ κ Ramsey. (A mouse N on is called sharplike provided .) We have , where is the mouse iteration of N. N is the oleast mouse not in Wκ (see [J] and [DJKo]). Here < denotes the mouse order. The context always clarifies whether the mouse order or the usual <-relation is meant.The main result of §1 is that Wκ ⊨ κ is the only Ramsey cardinal. A similar result has been found true in the smallest inner model L[U] of ZFC + “κ is measurable” if U is a normal measure on κ: L[U] ⊨ κ is the only measurable cardinal [Ku].


2015 ◽  
Vol 80 (1) ◽  
pp. 251-284
Author(s):  
SY-DAVID FRIEDMAN ◽  
PETER HOLY ◽  
PHILIPP LÜCKE

AbstractThis paper deals with the question whether the assumption that for every inaccessible cardinal κ there is a well-order of H(κ+) definable over the structure $\langle {\rm{H}}({\kappa ^ + }), \in \rangle$ by a formula without parameters is consistent with the existence of (large) large cardinals and failures of the GCH. We work under the assumption that the SCH holds at every singular fixed point of the ℶ-function and construct a class forcing that adds such a well-order at every inaccessible cardinal and preserves ZFC, all cofinalities, the continuum function, and all supercompact cardinals. Even in the absence of a proper class of inaccessible cardinals, this forcing produces a model of “V = HOD” and can therefore be used to force this axiom while preserving large cardinals and failures of the GCH. As another application, we show that we can start with a model containing an ω-superstrong cardinal κ and use this forcing to build a model in which κ is still ω-superstrong, the GCH fails at κ and there is a well-order of H(κ+) that is definable over H(κ+) without parameters. Finally, we can apply the forcing to answer a question about the definable failure of the GCH at a measurable cardinal.


Sign in / Sign up

Export Citation Format

Share Document