The Growth Kinetics of Isochrysis Galbana in Cultures Containing Sublethal Concentrations Of Mercuric Chloride

Author(s):  
Anthony G. Davies

There is increasing evidence that the specific growth rates of phytoplankton are hyperbolically related to the intracellular concentrations of rate-determining nutrients by expressions of the Michaelis-Menten type used in the study of enzyme reaction kinetics (see, for example, Caperon, 1968; Droop, 1968; Davies, 1970; Paasche, 1973). This has led us to inquire whether there might also be relationships, analogous to those which describe the effect of inhibitors upon the rates of enzyme reactions (Dixon & Webb, 1958) which can be applied to the growth of phytoplankton in the presence of sublethal levels of toxic substances.

Author(s):  
C. S. Richardson ◽  
D. Upadhyay ◽  
S. Mandjiny ◽  
L. Holmes

Bacillus thuringiensis (Bt) is a soil-dwelling, Gram-positive bacterium that is used as a biological pesticide and used to genetically engineer plants due to the toxic proteins it produces. B. thuringiensis was studied in batch cultures to determine the specific growth rates and doubling times. The purpose of this experiment was to research the growth kinetics of Bacillus thuringiensis in a 2L bioreactor and a 5L bioreactor containing growth media at different environmental conditions. Fermentation parameters were controlled by utilizing a Sartorius Stedim Biostat® A+ bioreactor system for bacterial growth. The environmental conditions included temperature, agitation, and aeration. The specific growth rates of B. thuringiensis were determined. The optimal conditions for the 2L bioreactor were 200 RPM, 30°C, 1.5 VVM, and with the highest specific growth rate 0.30 hr and the shortest doubling time 2.3 hr. For the 5L bioreactor, the optimal conditions were 150 RPM, 30°C, 1.5 VVM, and with the highest specific growth rate 1.2 hr and the fastest doubling time 0.6 hr.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1146
Author(s):  
Kaidi Peng ◽  
Mohamed Koubaa ◽  
Olivier Bals ◽  
Eugène Vorobiev

The aim of this work was to investigate the effect of pulsed electric fields (PEF) on the growth and acidification kinetics of Lactobacillus delbrueckii subsp. bulgaricus CFL1 during fermentation. The PEF treatments were applied during the fermentation process using a recirculation pump and a PEF treatment chamber coupled with a PEF generator. The medium flow rate through the chamber was first optimized to obtain the same growth and acidification kinetics than the control fermentation without medium recirculation. Different PEF intensities (60–428 V cm−1) were then applied to the culture medium to study the impact of PEF on the cells’ behavior. The growth and acidification kinetics were recorded during the fermentation and the specific growth rates µ, pH, and acidification rate (dpH/dt) were assessed. The results obtained showed a biphasic growth by applying high PEF intensities (beyond 285 V cm−1) with the presence of two maximal specific growth rates and a decrease in the acidification activities. It was demonstrated that the cells were stressed during the PEF treatment, but presented an accelerated growth after stopping it, leading thereby to similar absorbance and pH at the end of the fermentation. These results show the great potential of PEF technology to be applied to generate low acidified products by performing PEF-assisted fermentations.


2010 ◽  
Vol 76 (16) ◽  
pp. 5423-5431 ◽  
Author(s):  
Alexander C. Hayes ◽  
Steven N. Liss ◽  
D. Grant Allen

ABSTRACT The growth kinetics of Hyphomicrobium spp. and Thiobacillus spp. on dimethyl sulfide (DMS) and methanol (in the case of Hyphomicrobium spp.) in an enrichment culture created from a biofilter cotreating DMS and methanol were studied. Specific growth rates of 0.099 h−1 and 0.11 h−1 were determined for Hyphomicrobium spp. and Thiobacillus spp., respectively, growing on DMS at pH 7. These specific growth rates are double the highest maximum specific growth rate for bacterial growth on DMS reported to date in the literature. When the pH of the medium was decreased from pH 7 to pH 5, the specific growth rate of Hyphomicrobium spp. decreased by 85%, with a near 100-fold decline in the yield of Hyphomicrobium 16S rRNA gene copies in the mixed culture. Through the same pH shift, the specific growth rate and 16S rRNA gene yield of Thiobacillus spp. remained similar. When methanol was used as a substrate, the specific growth rate of Hyphomicrobium spp. declined much less over the same pH range (up to 30%) while the yield of 16S rRNA gene copies declined by only 50%. Switching from an NH4 +-N-based source to a NO3 −-N-based source resulted in the same trends for the specific growth rate of these microorganisms with respect to pH. This suggests that pH has far more impact on the growth kinetics of these microorganisms than the nitrogen source. The results of these mixed-culture batch experiments indicate that the increased DMS removal rates observed in previous studies of biofilters cotreating DMS and methanol are due to the proliferation of DMS-degrading Hyphomicrobium spp. on methanol at pH levels not conducive to high growth rates on DMS alone.


1999 ◽  
Vol 46 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Urs Lendenmann ◽  
Mario Snozzi ◽  
Thomas Egli

Kinetic models for microbial growth describe the specific growth rate (μ) as a function of the concentration of the growth-limiting nutrient (s) and a set of parameters. A typical example is the model proposed by Monod, where μ is related to s using substrate affinity (Ks) and the maximum specific growth rate (μmax). The preferred method to determine such parameters is to grow microorganisms in continuous culture and to measure the concentration of the growth-limiting substrate as a function of the dilution rate. However, owing to the lack of analytical methods to quantify sugars in the microgram per litre range, it has not been possible to investigate the growth kinetics of Escherichia coli in chemostat culture. Using an HPLC method able to determine steady-state concentrations of reducing sugars, we previously have shown that the Monod model adequately describes glucose-limited growth of E. coli ML30. This has not been confirmed for any other sugar. Therefore, we carried out a similar study with galactose and found steady-state concentrations between 18 and 840 μg·L-1 for dilution rates between 0.2 and 0.8·h-1, respectively. With these data the parameters of several models giving the specific growth rate as a function of the substrate concentration were estimated by nonlinear parameter estimation, and subsequently, the models were evaluated statistically. From all equations tested, the Monod model described the data best. The parameters for galactose utilisation were μmax = 0.75·h-1 and Ks = 67 μg·L-1. The results indicated that accurate Ks values can be estimated from a limited set of steady-state data when employing μmax measured during balanced growth in batch culture. This simplified procedure was applied for maltose, ribose, and fructose. For growth of E. coli with these sugars, μmax and Ks were for maltose 0.87·h-1, 100 μg·L-1; for ribose 0.57·h-1, 132 μg·L-1, and for fructose 0.70·h-1, 125 μg·L-1. Key words: monod model, continuous culture, galactose, glucose, fructose, maltose, ribose.


Author(s):  
Dan Dye ◽  
Jeff Muhs ◽  
Byard Wood ◽  
Ron Sims

A photobioreactor with an optical system that spatially dilutes solar photosynthetic active radiation has been designed, built, and tested at the Utah State University Biofuels Center. This photobioreactor could be used to produce microalgal biomass for a number of purposes, such as feedstock for an energy conversion process or high-value products such as pharmaceuticals and nutraceuticals. In addition, the reactor could be used to perform services such as removing nitrates, phosphates, and other contaminants from waste water, as well as scrubbing toxic gases and carbon dioxide from flue gas. Preliminary tests were performed that compared growth and productivity kinetics of this reactor with that of a control reactor simulating a pond. Tests indicated higher specific growth rates and higher areal and volumetric yields compared with the control reactor. The maximum specific growth rate, volumetric yield, and areal yield were 0.21 day−1, 0.059 gm L−1 day−1, and 15 gm m−2 day−1, respectively. Over 10 days of sequential-batch operation, the prototype photobioreactor converted direct-normal solar energy to energy stored in biomass at an average efficiency of 1%. The areal productivity, as mass per aperture per time, was three times higher than that of the control reactor, indicating the photobioreactor design investigated holds promise.


1989 ◽  
Vol 44 (11-12) ◽  
pp. 1036-1048 ◽  
Author(s):  
H. P. Leiseifer

The heat production of E. coli K12 growing aerobically in glucose limited chemostat cultures is determined in the range of specific growth rates μ ( = dilution rates D) from 0,058 h-1 to 0.852 h-1 for two different glucose concentrations Se in the instream of the chemostat. namely Se1=0.3182 g·1-1 and Se2 = 0.6364 g·1-1. Heat production Q and biomass production P per unit of culture volume show well correlated patterns for Se1 and Se2. For Se1 the highest value Q actually measured is 443-10-3 W·1-1 at D = 0.74 h-1 with P = 0.068 g·1-1·h-1 and for Se2 593·10-3 W·1-1 at D = 0.497 h-1 with P = 0.108 g·1-1·h-1. Heat production QB per unit of biomass appears to be independent of Se at least up to D - 0.5 h-1.At higher D there is strong indication that QB possesses a real maximum. The highest value of QB actually measured is 4.8 W·g-1 at D = 0.74 h-1. For Se1 and Se2 there were significantly higher specific growth rates verified in chemostat culture than μmaxBatch= 0.717 h-1 which is the maximum specific growth rate in comparable, unlimited batch cultures. The real maximum of QB is estimated to be in the vicinity of μmaxBatch. This suggests the hypothesis of a maximum principle for the growth in batch culture. For Se1 a closed analytical expression is derived for the relationship between μ and the substrate concentration S. μ[S] features a S-shaped characteristic with μmaxChemostat= 0.905 h-1; 1/2 μmaxChemostat is reached at S = 2.85·10-3 g·1-1. Three basic parameters which characterize the overall metabolism of the cells, namely the heat released per unit of substrate consumed, (Qs, the effective yield of biomass, Yeff, and μmaxChemostat are identified to depend on Se.


2011 ◽  
Vol 133 (1) ◽  
Author(s):  
Dan Dye ◽  
Jeff Muhs ◽  
Byard Wood ◽  
Ron Sims

A photobioreactor with an optical system that spatially dilutes solar photosynthetic active radiation has been designed, built, and tested at the Utah State University Biofuels Center. This photobioreactor could be used to produce microalgal biomass for a number of purposes, such as feedstock for an energy conversion process, or high-value products, such as pharmaceuticals and nutraceuticals. In addition, the reactor could be used to perform services such as removing nitrates, phosphates, and other contaminants from waste water, as well as scrubbing toxic gases and carbon dioxide from flue gas. Preliminary tests were performed that compared growth and productivity kinetics of this reactor with that of a control reactor without spatial light-dilution. Tests indicated higher specific growth rates and higher areal and volumetric yields compared with the control reactor. The maximum specific growth rate, volumetric yield, and areal yield were 0.21 day−1, 0.059 gm l−1 day−1, and 15 gm m−2 day−1, respectively. Over 10 days of sequential-batch operation, the prototype photobioreactor converted direct-normal solar energy to energy stored in biomass at an average efficiency of 1%. The areal productivity, as mass per aperture per time, was three times higher than that of the control reactor, indicating the photobioreactor design investigated holds promise.


1999 ◽  
Vol 30 (4) ◽  
pp. 310-314 ◽  
Author(s):  
Cássia Regina Sanchez ◽  
Clarita Schvartz Peres ◽  
Heloiza Ramos Barbosa

The growth kinetics of Acetivibrio cellulolyticus grown in medium containing different carbon sources (cellobiose, amorphous or crystalline cellulose) was investigated. The specific growth rate was higher in cellobiose fed cultures than in the presence of the other two substrates. Endoglucanase production was greater in cultures grown on amorphous cellulose; enzyme activity increased during the stationary phase in cultures grown on crystalline cellulose.


2003 ◽  
Vol 66 (2) ◽  
pp. 200-207 ◽  
Author(s):  
T. P. OSCAR

The green fluorescent protein (GFP) from the jellyfish Aequorea victoria can be expressed in, and used to follow the fate of, Salmonella in microbiologically complex ecosystems such as food. As a first step in the evaluation of GFP as a tool for the development of predictive models for naturally contaminated food, the present study was undertaken to compare the growth kinetics of parent and GFP-producing strains of Salmonella. A previously established sterile chicken burger model system was used to compare the growth kinetics of stationary-phase cells of parent and GFP strains of Salmonella Enteritidis, Salmonella Typhimurium, and Salmonella Dublin. Growth curves for constant temperatures from 10 to 48°C were fit to a two- or three-phase linear model to determine lag time, specific growth rate, and maximum population density. Secondary models for the growth parameters as a function of temperature were generated and compared between the parent and GFP strain pairs. The effects of GFP on the three growth parameters were significant and were affected by serotype and incubation temperature. The expression of GFP reduced specific growth rate and maximum population density while having only a small effect on the lag times of the three serotypes. The results of this study indicate that the growth kinetics of the GFP strains tested were different from those of the parent strains and thus would not be good marker strains for the development of predictive models for naturally contaminated food.


Sign in / Sign up

Export Citation Format

Share Document