Apparent source level of free-ranging humpback dolphin, Sousa chinensis, in the South China Sea

Author(s):  
Satoko Kimura ◽  
Tomonari Akamatsu ◽  
Liang Fang ◽  
Zhitao Wang ◽  
Kexiong Wang ◽  
...  

The acoustic performance and behaviour of free-ranging cetaceans requires investigation under natural conditions to understand how wild animals use sound. This is also useful to develop quantitative evaluation techniques for passive acoustic monitoring. There have been limited studies on the acoustics of the Indo-Pacific humpback dolphin; nevertheless, this species is of particular concern because of the anthropogenic activity in the coastal habitats. In the present study, we used a four-hydrophone array to estimate the apparent source levels (ASLs) of biosonar sequences (click trains), of this species in San-Niang Bay, China. As the dolphins approached the array, 173 click trains were found to meet the criteria of on-axis sounds produced within 60 m of the equipment. In total, 121 unclipped click trains were used for the ASL estimation. The qualified click trains contained 36.3 ± 32.5 clicks, lasting for 1.5 ± 1.5 s, with average inter-click intervals (ICIs) of 51.2 ± 38.3 ms. Average ICIs showed a bimodal distribution, with a cut-off at 20 ms. Short-range click trains, with short ICIs of <20 ms on average, were characterized by smaller ASLs, relatively stable ICIs and a shorter click train duration. The mean back-calculated ASL for humpback dolphins with an approximately maximum body size of 2.5 m was 181.7 ± 7.0 dB re 1 μPa at a distance of 1.6–57.2 m. This value was comparable to that recorded for other dolphins of similar body size, although the ASL estimates obtained in this study might be conservative.

2020 ◽  
Vol 25 (2) ◽  
pp. 209-218
Author(s):  
Maximilian Ruffert ◽  
Victoria L.G. Todd ◽  
Ian B. Todd

C-PODs are used for Passive Acoustic Monitoring (PAM) of harbour porpoises (Phocoena phocoena) at an offshore open sea location in the German North Sea. Diel patterns of echolocation click trains are extracted from minimum inter-click interval (minICI) data by binning. The aim of this study is to reassess and refine minICI ranges of click train data with particular consideration to the binning widths. Emphasis is also placed on choosing an appropriate visualisation of these binned data. Key ecological results include presence of higher train rates during the day with intermediate minICI values defined by the range 6-28 ms and a higher train rate with short minICI values 1.25-2.00 ms at night. This indicates an increase in porpoise feeding behaviour, or change of style, at night. Click trains with long minICI values > 35 ms occur at an equal rate throughout both diel phases, suggesting a more routine behaviour, such as navigation. Results could be revealed only by judicious choice of binning widths, e.g. previously overlooked patterns within historical echolocation data. The classification methodology can be used to analyse echolocation trains from a variety of species and can be applied to any PAM data with the relevant click parameters.


2021 ◽  
Vol 1 (11) ◽  
pp. 6-15
Author(s):  
Sergey V. Posyabin ◽  
◽  
Elena N. Borkhunova ◽  
Vladislav V. Belogurov ◽  
Mikhail D. Kachalin ◽  
...  

The article presents the results of studies of anatomical, histological and morphometric characteristics of bovine ungulates aimed at identifying signs of structural adaptation of the distal part of the limb to anthropogenically modeled content conditions. The factors that the hoof experiences are the predominance of static load, the high weight of the animal, and the support on solid soil. As a morphological control, elk is considered as a parrotfish animal with similar body size and weight, located in the conditions of natural biotsenose and moving on forest soils. It is shown that constant presence of cattle in conditions of hypokinesia on hard floors leads to change of limb setting and change of hoof shape, which is reflected in change of hoof shape, increase of hoof angle, ratio of plantar and dorsal hoof surfaces length. At the same time, the biomechanical load is redistributed between parts of the hoof so that the load on the wall increases and on the ball decreases. This may be a factor predisposing the hoof to the appearance of microtraumas, later manifested by laminites.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sebastián Muñoz-Duque ◽  
Silvia López-Casas ◽  
Héctor Rivera-Gutiérrez ◽  
Luz Jiménez-Segura

Fish produce sounds that are usually species-specific and associated with particular behaviors and contexts. Acoustic characterization enables the use of sounds as natural acoustic labels for species identification. Males of Prochilodus magdalenae produce mating sounds. We characterized  these sounds and tested their use in natural habitats, to use passive acoustic monitoring for spawning ground identification. We identified two types of acoustic signals: simple pulses and pulse trains. Simple pulses were 13.7 ms long, with peak frequency of 365 Hz, whereas pulse train were 2.3 s long, had peak frequency of 399 Hz, 48.6 pulses and its pulses lasted 12.2 ms, with interpulse interval of 49.0 ms long and 22.3 Hz pulse rate. We did not detect spawning in  absence of male calls nor differences in male sounds at different female densities. We found differences in train duration, pulse rate, and pulse duration in trains, according to the fish's source sites, but these sites were not well discriminated based on bioacoustical variables. In rivers, we located two P. magdalenae spawning grounds and recognized calls from another fish species (Megaleporinus muyscorum). We did not find a significant relationship between fish size and call peak frequency for P. magdalenae.


2016 ◽  
Author(s):  
Zhi-Tao Wang ◽  
Whitlow Au ◽  
Luke Rendell ◽  
Ke-Xiong Wang ◽  
Hai-Ping Wu ◽  
...  

Background. Knowledge of species-specific vocalization characteristics and their associated active communication space, the effective range over which a communication signal can be detected by a conspecific, is critical for understanding the impacts of underwater acoustic pollution, as well as other threats. Methods. We used a two-dimensional cross-shaped hydrophone array system to record the whistles of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis) in shallow-water environments of the Pearl River Estuary (PRE) and Beibu Gulf (BG), China. Using hyperbolic position fixing, which exploits time differences of arrival of a signal between pairs of hydrophone receivers, we obtained source location estimates for whistles with good signal-to-noise ratio (SNR≥10 dB) and not polluted by other sounds and back-calculated their apparent source levels. Combining with the masking levels (including simultaneous noise levels, masking tonal threshold, and the Sousa auditory threshold) and the custom made site-specific sound propagation models, we further estimated their active communication space (ACS). Results. Humpback dolphins produced whistles with average root-mean-square apparent source levels (ASL) of 138.5 ± 6.8 (mean ± standard deviation) and 137.2 ± 7.0 dB re 1μPa in PRE (N=33) and BG (N=209), respectively. We found statistically significant differences in ASLs among different whistle contour types. The mean and maximum ACS of whistles were estimated to be 14.7 ± 2.6 (median ± quartiledeviation) and 17.1± 3.5 m in PRE, and 34.2 ± 9.5 and 43.5 ± 12.2 m in BG. Using just the auditory threshold as the masking level produced the mean and maximum ACSat of 24.3 ± 4.8 and 35.7± 4.6 m for PRE, and 60.7 ± 18.1 and 74.3 ± 25.3 m for BG. The small ACSs were due to the high ambient noise level. Significant differences in ACSs were also observed among different whistle contour types. Discussion. Besides shedding some light for evaluating appropriate noise exposure levels and information for the regulation of underwater acoustic pollution, these baseline data can also be used for aiding the passive acoustic monitoring of dolphin populations, defining the boundaries of separate groups in a more biologically meaningful way during field surveys, and guiding the appropriate approach distance for local dolphin-watching boats and research boat during focal group following.


Zoo Biology ◽  
2009 ◽  
pp. n/a-n/a ◽  
Author(s):  
Julia Ritz ◽  
Catrin Hammer ◽  
Marcus Clauss
Keyword(s):  

2017 ◽  
Vol 65 (5) ◽  
pp. 292 ◽  
Author(s):  
Bradley P. Smith ◽  
Teghan A. Lucas ◽  
Rachel M. Norris ◽  
Maciej Henneberg

Endocranial volume was measured in a large sample (n = 128) of free-ranging dingoes (Canis dingo) where body size was known. The brain/body size relationship in the dingoes was compared with populations of wild (Family Canidae) and domestic canids (Canis familiaris). Despite a great deal of variation among wild and domestic canids, the brain/body size of dingoes forms a tight cluster within the variation of domestic dogs. Like dogs, free-ranging dingoes have paedomorphic crania; however, dingoes have a larger brain and are more encephalised than most domestic breeds of dog. The dingo’s brain/body size relationship was similar to those of other mesopredators (medium-sized predators that typically prey on smaller animals), including the dhole (Cuon alpinus) and the coyote (Canis latrans). These findings have implications for the antiquity and classification of the dingo, as well as the impact of feralisation on brain size. At the same time, it highlights the difficulty in using brain/body size to distinguish wild and domestic canids.


2019 ◽  
Vol 97 (1) ◽  
pp. 72-80 ◽  
Author(s):  
W.D. Halliday ◽  
M.K. Pine ◽  
S.J. Insley ◽  
R.N. Soares ◽  
P. Kortsalo ◽  
...  

The Arctic marine environment is changing rapidly through a combination of sea ice loss and increased anthropogenic activity. Given these changes can affect marine animals in a variety of ways, understanding the spatial and temporal distributions of Arctic marine animals is imperative. We use passive acoustic monitoring to examine the presence of marine mammals near Ulukhaktok, Northwest Territories, Canada, from October 2016 to April 2017. We documented bowhead whale (Balaena mysticetus Linnaeus, 1758) and beluga whale (Delphinapterus leucas (Pallas, 1776)) vocalizations later into the autumn than expected, and we recorded bowhead whales in early April. We recorded ringed seal (Pusa hispida (Schreber, 1775)) vocalizations throughout our deployment, with higher vocal activity than in other studies and with peak vocal activity in January. We recorded bearded seals (Erignathus barbatus (Erxleben, 1777)) throughout the deployment, with peak vocal activity in February. We recorded lower bearded seal vocal activity than other studies, and almost no vocal activity near the beginning of the spring breeding season. Both seal species vocalized more when ice concentration was high. These patterns in vocal activity document the presence of each species at this site over autumn and winter and are a useful comparison for future monitoring.


2021 ◽  
Vol 662 ◽  
pp. 115-124
Author(s):  
AG Mackiewicz ◽  
RL Putland ◽  
AF Mensinger

In coastal waters, anthropogenic activity and its associated sound have been shown to negatively impact aquatic taxa that rely on sound signaling and reception for navigation, prey location, and intraspecific communication. The oyster toadfish Opsanus tau depends on acoustic communication for reproductive success, as males produce ‘boatwhistle’ calls to attract females to their nesting sites. However, it is unknown if in situ vessel sound impacts intraspecific communication in this species. Passive acoustic monitoring using a 4-hydrophone linear array was conducted in Eel Pond, a small harbor in Woods Hole, MA, USA, to monitor the calling behavior of male toadfish. The number of calls pre- and post-exposure to vessel sound was compared. Individual toadfish were localized, and their approximate sound level exposure was predicted using sound mapping. Following exposure to vessel sound, the number of calls significantly decreased compared to the number of calls pre-exposure, with vessel sound overlapping the frequency range of male toadfish boatwhistles. This study provides support that anthropogenic sound can negatively affect intraspecific communication and suggests that in situ vessel sound has the ability to mask boatwhistles and change the calling behavior of male toadfish. Masking could lead to a reduction in intraspecific communication and lower reproductive efficiency within the Eel Pond toadfish population.


1993 ◽  
Vol 20 (6) ◽  
pp. 785 ◽  
Author(s):  
DM Watson ◽  
TJ Dawson

The effects of temporal (time of day and season) factors and size, sex, female reproductive state and group size on the diel time-use of free-ranging red kangaroos (Macropus rufus) was examined. Particular emphasis was given to the effects on their foraging behaviour, with foraging divided into cropping, chewing and searching components. The study was conducted in semi-arid western New South Wales from July 1991 to March 1992, a time of deepening drought conditions in New South Wales. Group size had very little influence on the time-use of M. rufus. It was negatively but only weakly correlated with the proportion of foraging time spent chewing (chewing intensity). No significant differences in time-use were found between size classes of adult males (large and medium-sized males), females with or without pouch young, or females with different-sized pouch young (no visible young, small pouch young or large pouch young). Differences occurred between adult males, adult females and subadult kangaroos. These differences were mainly associated with their chewing and searching behaviour and were related to body size; as body size increased the proportion of time spent chewing and the intensity of chewing increased while the proportion of time searching and the proportion of foraging time spent searching (searching intensity) decreased. Neither the proportion of time spent cropping or foraging nor the proportion of foraging time spent cropping (cropping intensity) or the proportion of active time spent foraging (foraging intensity) differed between any size/sex/reproductive class. Temporal effects had a considerable influence on time-use. M. rufus were most active at night and in the few hours after sunrise and sunset. Seasonal changes in time-use were largely a result of changes in daytime behaviour. M. rufus foraged less and rested more during the day in winter than in spring or summer. There was no increase in the intensity or proportion of time spent foraging or cropping at night to compensate for the reduction in diurnal foraging. It is hypothesised that temporal variations in time-use were related to variations in weather and vegetation conditions.


2017 ◽  
Vol 34 (1) ◽  
pp. 207-223 ◽  
Author(s):  
Dorian Cazau ◽  
Julien Bonnel ◽  
Joffrey Jouma’a ◽  
Yves le Bras ◽  
Christophe Guinet

AbstractThe underwater ambient sound field contains quantifiable information about the physical and biological marine environment. The development of operational systems for monitoring in an autonomous way the underwater acoustic signal is necessary for many applications, such as meteorology and biodiversity protection. This paper develops a proof-of-concept study on performing marine soundscape analysis from acoustic passive recordings of free-ranging biologged southern elephant seals (SES). A multivariate multiple linear regression (MMLR) framework is used to predict the measured ambient noise, modeled as a multivariate acoustic response, from SES (depth, speed, and acceleration) and environmental (wind) variables. Results show that the acoustic contributions of SES variables affect mainly low-frequency sound pressure levels (SPLs), while frequency bands above 3 kHz are less corrupted by SES displacement and allow a good measure of the Indian Ocean soundscape. Also, preliminary results toward the development of a mobile embedded weather sensor are presented. In particular, wind speed estimation can be performed from the passive acoustic recordings with an accuracy of 2 m s−1, using a rather simple multiple linear model.


Sign in / Sign up

Export Citation Format

Share Document