The ultrastructure of the tegument of adult Schistosoma haematobium

Parasitology ◽  
1984 ◽  
Vol 89 (1) ◽  
pp. 71-78 ◽  
Author(s):  
B. Leitch ◽  
A. J. Probert ◽  
N. W. Runham

SummaryThe ultrastructure of the tegument of Schistosoma haematobium was examined using scanning and transmission electron microscopy. The surface of the male worm is characterized by numerous raised tubercles bearing apically directed spines. The female in contrast to the male is cylindrical and relatively smooth. Details of oral and ventral suckers are given. The use of uranyl acetate as a tertiary fixative and en bloc stain has revealed the heptalaminate nature of the outer membrane. Tegumental mitochondria are shown to be morphologically more complex than those of S. mansoni. Spherical and elliptical inclusion bodies are also described. The ultrastructure of the oesophageal tegument of S. haematobium is described for the first time and corresponds with earlier observations of S. mansoni.

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1063
Author(s):  
Andreia Lucia Pinto ◽  
Ranjit Kaur Rai ◽  
Amelia Shoemark ◽  
Claire Hogg ◽  
Thomas Burgoyne

Primary ciliary dyskinesia (PCD) is a disorder affecting motile cilia. An early accurate diagnosis helps prevent lung damage and preserve lung function. To make a diagnostic assessment, one of the commonly used methods that allows for the examination of ciliary ultrastructure is transmission electron microscopy (TEM). This allows for a quantitative assessment of ciliary components to identify defects associated with PCD. Heavy metal staining is required to provide a contrast when imaging cilia in the TEM. One of the most commonly used stains is uranyl acetate (UA). UA can be applied to cellular material before embedding (en bloc), or to ultrathin sections of embedded samples (grid staining). UA is radioactive and, due to growing safety concerns and restrictions by government bodies, universities and hospitals, it is essential to find a suitable alternative. We show UA-zero (UAZ), when used en bloc, provides a high contrast and is a suitable replacement for UA. PCD diagnostic experts, having reviewed ciliary cross-sections stained with UAZ en bloc, are confident that the staining and PCD defects are readily detectable similar to samples that have been stained with UA.


Author(s):  
T. L. Benning ◽  
P. Ingram ◽  
J. D. Shelburne

Two benzofuran derivatives, chlorpromazine and amiodarone, are known to produce inclusion bodies in human tissues. Prolonged high dose chlorpromazine therapy causes hyperpigmentation of the skin with electron-dense inclusion bodies present in dermal histiocytes and endothelial cells ultrastructurally. The nature of the deposits is not known although a drug-melanin complex has been hypothesized. Amiodarone may also cause cutaneous hyperpigmentation and lamellar lysosomal inclusion bodies have been demonstrated within the cells of multiple organ systems. These lamellar bodies are believed to be the product of an amiodarone-induced phospholipid storage disorder. We performed transmission electron microscopy (TEM) and energy dispersive x-ray microanalysis (EDXA) on tissue samples from patients treated with these drugs, attempting to detect the sulfur atom of chlorpromazine and the iodine atom of amiodarone within their respective inclusion bodies.A skin biopsy from a patient with hyperpigmentation due to prolonged chlorpromazine therapy was fixed in 4% glutaraldehyde and processed without osmium tetroxide or en bloc uranyl acetate for Epon embedding.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


2019 ◽  
Vol 1 (4) ◽  
pp. 1581-1588 ◽  
Author(s):  
S. I. Sadovnikov ◽  
E. Yu. Gerasimov

For the first time, the α-Ag2S (acanthite)–β-Ag2S (argentite) phase transition in a single silver sulfide nanoparticles has been observed in situ using a high-resolution transmission electron microscopy method in real time.


1997 ◽  
Vol 04 (03) ◽  
pp. 559-566 ◽  
Author(s):  
J. M. GIBSON ◽  
X. CHEN ◽  
O. POHLAND

Transmission electron microscopy is uniquely able to extend techniques for imaging free surface steps to the buried interface regime, without significant loss of detail. Two mechanisms for imaging surface and interfacial steps by transmission electron microscopy are described. They are thickness contrast and strain contrast. The former reveals the position and approximate height of steps, whereas the latter detects stress fields which are commonly associated with steps. The basis for each of these methods is elaborated, and preliminary results are shown for step images at Si/SiO2 interfaces, where measurable stress fields have been directly detected for the first time.


2007 ◽  
Vol 7 (2) ◽  
pp. 530-534 ◽  
Author(s):  
Chunyi Zhi ◽  
Yoshio Bando ◽  
Guozhen Shen ◽  
Chengchun Tang ◽  
Dmitri Golberg

Adopting a wet chemistry method, Au and Fe3O4 nanoparticles were functionalized on boron nitride nanotubes (BNNTs) successfully for the first time. X-ray diffraction pattern and transmission electron microscopy were used to characterize the resultant products. Subsequently, a method was proposed to fabricate heterojunction structures based on the particle-functionalized BNNTs. As a demonstration, BNNT-carbon nanostructure, BNNT-ZnO and BNNT-Ga2O3 junctions were successfully fabricated using the functionalized particles as catalysts.


2010 ◽  
Vol 434-435 ◽  
pp. 169-172 ◽  
Author(s):  
Wei Kong Pang ◽  
It Meng Low ◽  
J.V. Hanna

The use of secondary-ion mass spectrometry (SIMS), nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) to detect the existence of amorphous silica in Ti3SiC2 oxidised at 500–1000°C is described. The formation of an amorphous SiO2 layer and its growth in thickness with temperature was monitored using dynamic SIMS. Results of NMR and TEM verify for the first time the direct evidence of amorphous silica formation during the oxidation of Ti3SiC2 at 1000°C.


2008 ◽  
Vol 14 (5) ◽  
pp. 433-438 ◽  
Author(s):  
Daniel Biggemann ◽  
Marcelo H. Prado da Silva ◽  
Alexandre M. Rossi ◽  
Antonio J. Ramirez

AbstractCrystalline properties of synthetic nanostructured hydroxyapatite (n-HA) were studied using high-resolution transmission electron microscopy. The focal-series-restoration technique, obtaining exit-plane wavefunction and spherical aberration-corrected images, was successfully applied for the first time in this electron-beam-susceptible material. Multislice simulations and energy dispersive X-ray spectroscopy were also employed to determine unequivocally that n-HA particles of different size preserve stoichiometric HA-like crystal structure. n-HA particles with sizes of twice the HA lattice parameter were found. These results can be used to optimize n-HA sinterization parameters to improve bioactivity.


2010 ◽  
Vol 88 (12) ◽  
pp. 1256-1261 ◽  
Author(s):  
Guifang Sun ◽  
Faming Gao ◽  
Li Hou

Boron carbonitride (BCN) nanotubes have been successfully prepared using NH4Cl, KBH4, and ZnBr2 as the reactants at 480 °C for 12 h by a new benzene-thermal approach in a N2 atmosphere. As its by-product, a new form of carbon regular hexagonal nanocages are observed. The samples are characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), transmission electron diffraction (TED), electron energy loss spectroscopy (EELS), and high-resolution transmission electron microscopy (HRTEM). The prepared nanotubes have uniform outer diameters in the range of 150 to 500 nm and a length of up to several micrometerss. The novel carbon hexagonal nanocages have a typical size ranging from 100 nm to 1.5 µm, which could be the giant fullerene cages of [Formula: see text] (N = 17∼148). So, high fullerenes are observed for the first time. The influences of reaction temperature and ZnBr2 on products and the formation mechanism of BCN nanotubes are discussed.


Sign in / Sign up

Export Citation Format

Share Document