Protein content of CBA/Ca mouse diet: relationship with host antibody responses and the population dynamics ofTrichuris muris(Nematoda) in repeated infection

Parasitology ◽  
1992 ◽  
Vol 105 (1) ◽  
pp. 139-150 ◽  
Author(s):  
E. Michael ◽  
D. A. P. Bundy

The influence of host dietary protein on acquired immunity and intestinal helminth population dynamics during repeated infection was studied using the mouse–Trichuris murisexperimental model. CBA/Ca mice fed a 2% (by mass) protein dietad libitummaintained body weight during the experiment, but when fed diets containing either 4% or 16% (by mass) protein gained weight steadily. Infection withT. murisdid not affect the growth of the latter mice but significantly reduced the growth of animals fed on the 2% protein diet. When repeatedly infected with either 5 or 50 eggs every 10 days, the mice fed the 2% or 4% protein diet accumulated adults in proportion to infection dose. The results show that this is due to both the establishment of larvae at each repeated infection and the survival of established adults. In contrast, very few worms were recovered from animals fed the 16% protein diet, principally as a result of the development of strong acquired immunity to reinfection.T. murisegg output/mouse increased with infection dose in animals fed the low protein diets, but no parasite eggs were detected in the faeces of hosts fed the 16% protein diet. Mouse antibody reponses to adult worm excretory/secretory antigen were time- and infection dose-dependent in all 3 dietary groups. The major finding was that the specific antibody response was more intense, both quantitatively (serum OD levels) and qualitatively (antigen recognition by IgG1), in mice fed the low protein diets, even though they remained susceptible to infection. This study shows that host dietary protein deficiency, even at levels irrelevant to normal growth, can markedly potentiate the transmission ofT. murisvia alterations in host resistance. The high levels of antibody in susceptible animals suggest that this defect in resistance is unlikely to be due to nutrient deficiency-associated defects in humoral immunity.

Parasitology ◽  
1991 ◽  
Vol 103 (3) ◽  
pp. 403-411 ◽  
Author(s):  
E. Michael ◽  
D. A. P. Bundy

The relationship between host dietary protein and intestinal helminth population biology during primary infection was studied using a mouse–T. muris experimental model. Uninfected CBA/Ca mice fed either a 4% (by mass) or 16% protein diet grew at a similar rate, but both suffered significant growth retardation when infected with T. muris. T. muris initial establishment and fecundity were unaffected by dietary protein content, but were significantly influenced by infection dose, declining at the higher level of infection. Dietary protein deficiency increased parasite survival at high infection levels. Heavily infected hosts fed the 16% protein diet were found to expel almost the whole of their infections around day 21 p.i. By contrast, this response appeared defective in hosts fed the lower 4% protein diet, resulting in the establishment and survival of large, chronic and patent infections. Mean faecal egg output per mouse increased with infection dose in animals fed a low protein diet, but was low and unrelated to infection exposure in hosts fed the 16% protein diet. It is concluded that low protein levels in diet, via alterations in host resistance, may have an important influence on the transmission of T. muris.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joanna Moro ◽  
Catherine Chaumontet ◽  
Patrick C. Even ◽  
Anne Blais ◽  
Julien Piedcoq ◽  
...  

AbstractTo study, in young growing rats, the consequences of different levels of dietary protein deficiency on food intake, body weight, body composition, and energy balance and to assess the role of FGF21 in the adaptation to a low protein diet. Thirty-six weanling rats were fed diets containing 3%, 5%, 8%, 12%, 15% and 20% protein for three weeks. Body weight, food intake, energy expenditure and metabolic parameters were followed throughout this period. The very low-protein diets (3% and 5%) induced a large decrease in body weight gain and an increase in energy intake relative to body mass. No gain in fat mass was observed because energy expenditure increased in proportion to energy intake. As expected, Fgf21 expression in the liver and plasma FGF21 increased with low-protein diets, but Fgf21 expression in the hypothalamus decreased. Under low protein diets (3% and 5%), the increase in liver Fgf21 and the decrease of Fgf21 in the hypothalamus induced an increase in energy expenditure and the decrease in the satiety signal responsible for hyperphagia. Our results highlight that when dietary protein decreases below 8%, the liver detects the low protein diet and responds by activating synthesis and secretion of FGF21 in order to activate an endocrine signal that induces metabolic adaptation. The hypothalamus, in comparison, responds to protein deficiency when dietary protein decreases below 5%.


1982 ◽  
Vol 62 (4) ◽  
pp. 1193-1197 ◽  
Author(s):  
P. A. THACKER ◽  
J. P. BOWLAND ◽  
L. P. MILLIGAN ◽  
E. WELTZIEN

The kinetics of urea recycling were determined in six female crossbred pigs utilizing a radioisotope dilution technique. The experimental animals were fed three times daily 500 g of a corn-soybean meal diet formulated to contain 8.4, 15.8 or 24.7% crude protein. Nitrogen digestibility, urinary nitrogen excretion, total nitrogen excretion and retained nitrogen were highest on the 24.7% protein diet and decreased with decreasing dietary protein. Urea pool size, entry rate and excretion rate were also highest on the 24.7% protein diet and decreased with decreasing protein intake. Expressed as a percentage of the total entry rate, a significantly higher percentage of urea was recycled in pigs fed the low protein diets compared with those fed a higher protein diet. Key words: Pig, urea, recycling, kinetics, protein


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3801
Author(s):  
George A. Bray ◽  
Leanne M. Redman ◽  
Jennifer Rood ◽  
Lilian de Jonge ◽  
Steven R. Smith

Background: During overeating, a low protein diet slowed the rate of weight gain and increased the energy cost of the added weight, suggesting that low protein diets reduced energy efficiency. The Protein Overfeeding (PROOF) study explored the metabolic changes to low and high protein diets, and this sub-study examined the changes in body composition and blood lipids when eating high and low protein diets during overeating. Methods: Twenty-three healthy volunteers (M = 14; F = 9) participated in an 8-week, parallel arm study where they were overfed by ~40% with diets containing 5% (LPD = low protein diet), 15% (NPD = normal protein diet), or 25% (HPD = high protein diet) protein. Dual energy X-ray absorptiometry (DXA) and computer tomography (CT) were used to quantify whole body and abdominal fat and intrahepatic lipid, respectively. Metabolites were measured by standard methods. Results: Protein intake and fat intake were inversely related since carbohydrate intake was fixed. Although overeating the LPD diet was associated with a significant increase in high density lipoprotein (HDL)-cholesterol (p < 0.001) and free fatty acids (p = 0.034), and a significant decrease in fat free mass (p < 0.0001) and liver density (p = 0.038), statistical models showed that dietary protein was the main contributor to changes in fat free mass (p = 0.0040), whereas dietary fat was the major predictor of changes in HDL-cholesterol (p = 0.014), free fatty acids (p = 0.0016), and liver fat (p = 0.0007). Conclusions: During 8 weeks of overeating, the level of dietary protein intake was positively related to the change in fat free mass, but not to the change in HDL-cholesterol, free fatty acids, and liver fat which were, in contrast, related to the intake of dietary fat.


The influence of the protein component in the diet of the host on the population dynamics of gastrointestinal helminth infection was studied by using a mouse – H. polygyrus experimental model. Mice fed a 2% (by mass) protein diet ad libitum maintained body weight during the experiment, but gained weight steadily when fed a diet containing 8% (by mass) protein. When repeatedly infected with 5, 10, 20 or 40 larvae every 2 weeks, the mice fed the 2% (by mass) protein diet accumulated adult worms in direct proportion to exposure to the infective stages. Under similar infection régimes, mice fed an 8% (by mass) protein diet acquired a partly effective immunity to reinfection by the nematode. Acquired immunity was principally manifest as a reduction in the survival of adult worms, although a slight increase in the mortality rate and/or the development time of the tissue-dwelling larval phase was observed. Worm fecundity per head was significantly depressed in hosts fed the 8% protein diet. In conclusion, in these experiments it is demonstrated that the nutritional status of the host can influence the population dynamics of helminth infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Tao ◽  
Bo Deng ◽  
Qizhi Yuan ◽  
Xiaoming Men ◽  
Jie Wu ◽  
...  

Low protein diets are commonly used in the growing-finishing pig stage of swine production; however, the effects of low dietary protein on the intestinal microbiota and their metabolites, and their association with pig sex, remain unclear. The present study aimed to assess the impact of a low crude protein (CP) diet on the gut microbiome and metabolome, and to reveal any relationship with sex. Barrows and gilts (both n = 24; initial body = 68.33 ± 0.881 kg) were allocated into two treatments according to sex. The four groups comprised two pairs of gilts and barrows fed with a high protein diet (CP 17% at stage I; CP 13% at stage II) and a low protein diet (CP 15% at stage I; CP 11% at stage II), respectively, for 51 d. Eight pigs in each group were slaughtered and their colon contents were collected. Intestinal microbiota and their metabolites were assessed using 16S rRNA sequencing and tandem mass spectrometry, respectively. The low protein diet increased intestinal microbiota species and richness indices (P &lt; 0.05) in both sexes compared with the high protein diet. The sample Shannon index was different (P &lt; 0.01) between barrows and gilts. At the genus level, unidentified Clostridiales (P &lt; 0.05), Neisseria (P &lt; 0.05), unidentified Prevotellaceae (P &lt; 0.01) and Gracilibacteria (P &lt; 0.05) were affected by dietary protein levels. The relative abundance of unidentified Prevotellaceae was different (P &lt; 0.01) between barrows and gilts. The influence of dietary protein levels on Neisseria (P &lt; 0.05), unidentified Prevotellaceae (P &lt; 0.01) and Gracilibacteria (P &lt; 0.05) were associated with sex. Metabolomic profiling indicated that dietary protein levels mainly affected intestinal metabolites in gilts rather than barrows. A total of 434 differentially abundant metabolites were identified in gilts fed the two protein diets. Correlation analysis identified that six differentially abundant microbiota communities were closely associated with twelve metabolites that were enriched for amino acids, inflammation, immune, and disease-related metabolic pathways. These results suggested that decreasing dietary protein contents changed the intestinal microbiota in growing-finishing pigs, which selectively affected the intestinal metabolite profiles in gilts.


2001 ◽  
Vol 52 (7) ◽  
pp. 791
Author(s):  
L. Ma ◽  
F. R. Dunshea ◽  
Y. M. Brockwell ◽  
R. L. Inglis ◽  
D. J. Kingston ◽  
...  

Plasma hormone concentrations were measured in gilts after fasting, long-term protein restriction, or supplementation. In 11-week-old pigs fasted overnight, plasma insulin, glucagon, gastrin, urea, and glucose were increased 30 min after re-feeding (P < 0.05), whereas IGF-I did not change. In 16-week-old gilts fed a standard commercial diet [14.6% crude protein (CP)], or a high-protein diet (16.7% CP) for 4 weeks, the high-protein diet increased weight gain (13%; P < 0.05) and carcass weight (4%; P < 0.05), but did not alter plasma IGF-I, insulin, or glucagon. In 10-week-old gilts fed high-protein diets (19.4% and 18.3% CP), or low-protein diets (15.5% and 13.3% CP) for 12 weeks during the grower and finisher phases, respectively, the low-protein diet decreased weight gain (18%; P < 0.001) and carcass weight (11%; P < 0.01), with a marked increase in plasma glucagon (P < 0.05), no change in insulin, and only a trend towards decreased IGF-I (P = 0.1). The pigs were more sensitive to altered dietary protein at 10 weeks of age than at 16 weeks. Plasma IGF-I was not responsive to the short-term effects of feeding or the long-term effects of dietary protein. Glucagon could provide a useful marker for nutritional status in young pigs, provided that time of feeding is taken into account.


2001 ◽  
Vol 52 (5) ◽  
pp. 603
Author(s):  
L. Ma ◽  
F. R. Dunshea ◽  
Y. M. Brockwell ◽  
R. L. Inglis ◽  
D. J. Kingston ◽  
...  

Plasma hormone concentrations were measured in gilts after fasting, long-term protein restriction, or supplementation. In 11-week-old pigs fasted overnight, plasma insulin, glucagon, gastrin, urea, and glucose were increased 30 min after re-feeding (P < 0.05), whereas IGF-I did not change. In 16-week-old gilts fed a standard commercial diet [14.6% crude protein (CP)], or a high-protein diet (16.7% CP) for 4 weeks, the high-protein diet increased weight gain (13%; P < 0.05) and carcass weight (4%; P < 0.05), but did not alter plasma IGF-I, insulin, or glucagon. In 10-week-old gilts fed high-protein diets (19.4% and 18.3% CP), or low-protein diets (15.5% and 13.3% CP) for 12 weeks during the grower and finisher phases, respectively, the low-protein diet decreased weight gain (18%; P < 0.001) and carcass weight (11%; P < 0.01), with a marked increase in plasma glucagon (P < 0.05), no change in insulin, and only a trend towards decreased IGF-I (P = 0.1). The pigs were more sensitive to altered dietary protein at 10 weeks of age than at 16 weeks. Plasma IGF-I was not responsive to the short-term effects of feeding or the long-term effects of dietary protein. Glucagon could provide a useful marker for nutritional status in young pigs, provided that time of feeding is taken into account.


2021 ◽  
Author(s):  
Xin Tao ◽  
Bo Deng ◽  
Qizhi Yuan ◽  
Xiaoming Men ◽  
Jie Wu ◽  
...  

Abstract Background Low protein diets are commonly used in the growing-finishing pig stage of swine production; however, the effects of low dietary protein on the intestinal microbiota and their metabolites, and their association with pig sex, remain unclear. The present study aimed to assess the impact of a low crude protein (CP) diet on the gut microbiome and metabolome, and to reveal any relationship with sex. Results Barrows and gilts (both n= 24; initial body = 68.33 ± 0.881 kg) were allocated into two treatments according to sex. The four groups comprised two pairs of gilts and barrows fed with a high protein diet (HPD, CP 17% at stage Ⅰ; CP 13% at stage Ⅱ) and a low protein diet (LPD, CP 15% at stage Ⅰ; CP 11% at stage Ⅱ), respectively, for 51 d. Eight pigs in each group were slaughtered and their colon contents were collected. Intestinal microbiota and their metabolites were assessed using 16S rRNA sequencing and tandem mass spectrometry, respectively. The LPD increased intestinal microbiota species and richness indices significantly in both sexes compared with the HPD. The Sample Shannon index was significantly different between barrows and gilts. At the phylum level, the LPD increased the relative abundance of Actinobacteria significantly. The influence of dietary protein levels on Proteobacteria and Synergistetes were associated significantly with sex. At the genus level, Clostridiales, Neisseria, and Prevotellaceae were affected significantly by dietary protein levels. In the latter two genera, the effects were significantly different between barrows and gilts. Metabolomic profiling indicated that dietary protein levels mainly affected intestinal metabolites in gilts rather than barrows. A total of 434 differently expressed metabolites were identified in gilts fed the two protein diets. Correlation analysis identified that six differentially abundant microbiota communities were closely associated with twelve metabolites that were enriched for amino acids, inflammation, immune, and disease-related metabolic pathways. Conclusions These results suggested that decreasing dietary protein contents benefitted the intestinal microbiota in growing-finishing pigs, which selectively affected the microbiota and metabolite profiles in gilts.


1980 ◽  
Vol 238 (4) ◽  
pp. E358-E363
Author(s):  
J. K. Tews ◽  
A. E. Harper

Distribution of alpha-aminoisobutyric acid (AIB) in the rat was modified by food, dietary protein, and glucagon. In rats last fed 24 h before AIB injection, AIB clearance from plasma and uptake into liver were greater in rats fed a high-protein diet (60% casein) than in rats fed the control diet (18% casein); AIB clearance from plasma and uptake into muscle were lowered by a low-protein diet (6% casein). Feeding rats lowered clearance of AIB from plasma in low- and high-protein groups. Distribution ratios (AIB concentration in tissue water/AIB in plasma) were low in all tissues but liver during the first 7 h after feeding high protein when compared to the control values; ratios were low in muscle, heart, and kidney after feeding low protein. Maximum ratios occurred at different times for different tissues; the time was delayed by the high-protein diet in all tissues but liver. Glucagon increased all ratios in rats fed the control or low-protein diets, with the smallest changes occurring in liver and muscle from low-protein rats.


Sign in / Sign up

Export Citation Format

Share Document