The west Greenland cod fishery

Polar Record ◽  
1966 ◽  
Vol 13 (82) ◽  
pp. 23-28
Author(s):  
D. J. Garrod

The conception of the sea as an unlimited reservoir of fish is now outdated. The post-war history of the fishery resources of the north Atlantic has shown that stocks can be depleted to a level where the catching rates are no longer an economical proposition, and the general pattern of expansion has been to move farther afield to grounds where the catches are sufficiently improved to offset the greater steaming time, and hence running costs, involved.

1969 ◽  
Vol 20 ◽  
pp. 67-70 ◽  
Author(s):  
Nynke Keulen ◽  
Tomas Næraa ◽  
Thomas F. Kokfelt ◽  
John C. Schumacher ◽  
Anders Scherstén

The Fiskenæsset complex in southern West Greenland is part of the North Atlantic craton and is a layered intrusion consisting of gabbro, ultramafic and anorthositic rocks that was deformed during multiple episodes of folding and metamorphism (Myers 1985). We collected late-stage magmatic hornblenditic dykes and adjacent anorthosites and studied these samples integratively with several in situ techniques to determine the igneous and metamorphic history of the Fiskenæsset complex. The work presented here is part of an ongoing joint project between the Greenland Bureau of Minerals and Petroleum and the Geological Survey of Denmark and Greenland (GEUS). Here we report on new radiometric ages and mineral chemistry data from anorthosites from the North Atlantic craton in southern West Greenland (Fig. 1).


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 329
Author(s):  
Albenis Pérez-Alarcón ◽  
José C. Fernández-Alvarez ◽  
Rogert Sorí ◽  
Raquel Nieto ◽  
Luis Gimeno

The combined effect of the sea surface temperature (SST) and the North Atlantic subtropical high-pressure system (NASH) in the interannual variability of the genesis of tropical cyclones (TCs) and landfalling in the period 1980–2019 is explored in this study. The SST was extracted from the Centennial Time Scale dataset from the National Oceanic and Atmospheric Administration (NOAA), and TC records were obtained from the Atlantic Hurricane Database of the NOAA/National Hurricane Center. The genesis and landfalling regions were objectively clustered for this analysis. Seven regions of TC genesis and five for landfalling were identified. Intercluster differences were observed in the monthly frequency distribution and annual variability, both for genesis and landfalling. From the generalized least square multiple regression model, SST and NASH (intensity and position) covariates can explain 22.7% of the variance of the frequency of TC genesis, but it is only statistically significant (p < 0.1) for the NASH center latitude. The SST mostly modulates the frequency of TCs formed near the West African coast, and the NASH latitudinal variation affects those originated in the Lesser Antilles arc. For landfalling, both covariates explain 38.7% of the variance; however, significant differences are observed in the comparison between each region. With a statistical significance higher than 90%, SST and NASH explain 33.4% of the landfalling variability in the archipelago of the Bahamas and central–eastern region of Cuba. Besides, landfalls in the Gulf of Mexico and Central America seem to be modulated by SST. It was also found there was no statistically significant relationship between the frequency of genesis and landfalling with the NASH intensity. However, the NASH structure modulates the probability density of the TCs trajectory that make landfall once or several times in their lifetime. Thus, the NASH variability throughout a hurricane season affects the TCs trajectory in the North Atlantic basin. Moreover, we found that the landfalling frequency of TCs formed near the West Africa coast and the central North Atlantic is relatively low. Furthermore, the SST and NASH longitude center explains 31.6% (p < 0.05) of the variance of the landfalling intensity in the archipelago of the Bahamas, while the SST explains 26.4% (p < 0.05) in Central America. Furthermore, the 5-year moving average filter revealed decadal and multidecadal variability in both genesis and landfalling by region. Our findings confirm the complexity of the atmospheric processes involved in the TC genesis and landfalling.


2019 ◽  
Vol 60 (10) ◽  
pp. 1991-2024 ◽  
Author(s):  
M G Kopylova ◽  
E Tso ◽  
F Ma ◽  
J Liu ◽  
D G Pearson

Abstract We studied the petrography, mineralogy, thermobarometry and whole-rock chemistry of 120 peridotite and pyroxenite xenoliths collected from the 156–138 Ma Chidliak kimberlite province (Southern Baffin Island). Xenoliths from pipes CH-1, -6, -7 and -44 are divided into two garnet-bearing series, dunites–harzburgites–lherzolites and wehrlites–olivine pyroxenites. Both series show widely varying textures, from coarse to sheared, and textures of late formation of garnet and clinopyroxene. Some samples from the lherzolite series may contain spinel, whereas wehrlites may contain ilmenite. In CH-6, rare coarse samples of the lherzolite and wehrlite series were derived from P = 2·8 to 5·6 GPa, whereas predominant sheared and coarse samples of the lherzolite series coexist at P = 5·6–7·5 GPa. Kimberlites CH-1, -7, -44 sample mainly the deeper mantle, at P = 5·0–7·5 GPa, represented by coarse and sheared lherzolite and wehrlite series. The bulk of the pressure–temperature arrays defines a thermal state compatible with 35–39 mW m–2 surface heat flow, but a significant thermal disequilibrium was evident in the large isobaric thermal scatter, especially at depth, and in the low thermal gradients uncharacteristic of conduction. The whole-rock Si and Mg contents of the Chidliak xenoliths and their mineral chemistry reflect initial high levels of melt depletion typical of cratonic mantle and subsequent refertilization in Ca and Al. Unlike the more orthopyroxene-rich mantle of many other cratons, the Chidliak mantle is rich (∼83 vol%) in forsteritic olivine. We assign this to silicate–carbonate metasomatism, which triggered wehrlitization of the mantle. The Chidliak mantle resembles the Greenlandic part of the North Atlantic Craton, suggesting the former contiguous nature of their lithosphere before subsequent rifting into separate continental fragments. Another, more recent type of mantle metasomatism, which affected the Chidliak mantle, is characterized by elevated Ti in pyroxenes and garnet typical of all rock types from CH-1, -7 and -44. These metasomatic samples are largely absent from the CH-6 xenolith suite. The Ti imprint is most intense in xenoliths derived from depths equivalent to 5·5–6·5 GPa where it is associated with higher strain, the presence of sheared samples of the lherzolite series and higher temperatures varying isobarically by up to 200 °C. The horizontal scale of the thermal-metasomatic imprint is more ambiguous and could be as regional as tens of kilometers or as local as &lt;1 km. The time-scale of this metasomatism relates to a conductive length-scale and could be as short as &lt;1 Myr, shortly predating kimberlite formation. A complex protracted metasomatic history of the North Atlantic Craton reconstructed from Chidliak xenoliths matches emplacement patterns of deep CO2-rich and Ti-rich magmatism around the Labrador Sea prior to the craton rifting. The metasomatism may have played a pivotal role in thinning the North Atlantic Craton lithosphere adjacent to the Labrador Sea from ∼240 km in the Jurassic to ∼65 km in the Paleogene.


2020 ◽  
Vol 287 (1938) ◽  
pp. 20202318
Author(s):  
James P. Rule ◽  
Justin W. Adams ◽  
Felix G. Marx ◽  
Alistair R. Evans ◽  
Alan J. D. Tennyson ◽  
...  

Living true seals (phocids) are the most widely dispersed semi-aquatic marine mammals, and comprise geographically separate northern (phocine) and southern (monachine) groups. Both are thought to have evolved in the North Atlantic, with only two monachine lineages—elephant seals and lobodontins—subsequently crossing the equator. The third and most basal monachine tribe, the monk seals, have hitherto been interpreted as exclusively northern and (sub)tropical throughout their entire history. Here, we describe a new species of extinct monk seal from the Pliocene of New Zealand, the first of its kind from the Southern Hemisphere, based on one of the best-preserved and richest samples of seal fossils worldwide. This unanticipated discovery reveals that all three monachine tribes once coexisted south of the equator, and forces a profound revision of their evolutionary history: rather than primarily diversifying in the North Atlantic, monachines largely evolved in the Southern Hemisphere, and from this southern cradle later reinvaded the north. Our results suggest that true seals crossed the equator over eight times in their history. Overall, they more than double the age of the north–south dichotomy characterizing living true seals and confirms a surprisingly recent major change in southern phocid diversity.


Author(s):  
Alessandro Stanziani

The history of political-economic thought has been built up over the centuries with a uniform focus on European and North American thinkers. Intellectuals beyond the North Atlantic have been largely understood as the passive recipients of already formed economic categories and arguments. This view has often been accepted not only by scholars and observers in Europe but also in many other places such as Russia, India, China, Japan, and the Ottoman Empire. In this regard, the articles included in this collection explicitly differentiate from this diffusionist approach (“born in Western Europe, then flowed everywhere else”).


2003 ◽  
Vol 60 (2) ◽  
pp. 211-222 ◽  
Author(s):  
Paul J. Hearty

AbstractOver 100 whole-rock amino acid racemization (AAR) ratios from outcrops around Rottnest Island (32.0° S Latitude near Perth) indicate distinct pulses of eolian deposition during the late Quaternary. Whole-rock d-alloisoleucine/l-isoleucine (A/I) ratios from bioclastic carbonate deposits fall into three distinct modal classes or “aminozones.” The oldest, Aminozone E, averages 0.33 ± 0.04 (n = 21). Red palaeosol and thick calcrete generally cap the Aminozone E deposits. A younger Aminozone C averages 0.22 ± 0.03 (n = 63); comprising two submodes at 0.26 ± 0.01 (n = 14) and 0.21 ± 0.02 (n = 49). Multiple dune sets of this interval are interrupted by relatively weak, brown to tan “protosols.” A dense, dark brown rendzina palaeosol caps the Aminozone C succession. Ratios from Holocene dune and marine deposits (“Aminozone A”) center on 0.11 ± 0.02 (n = 15), comprising submodes of 0.13 ± 0.01 (9) and 0.09 ± 0.01 (6). Calibration of A/I averages from Aminozones E and A are provided by U/Th and 14C radiometric ages of 125,000 yr (marine oxygen isotope stage (MIS) 5e and 2000–6000 14C yr B.P. (MIS 1), respectively. The whole-rock A/I results support periodic deposition initiated during MIS 5e, continuing through MIS 5c, and then peaking at the end of MIS 5a, about 70,000–80,000 yr ago. Oceanographic evidence indicates the area was subjected to much colder conditions during MIS 2–4 (10,000 to 70,000 yr ago), greatly slowing the epimerization rate. Eolianite deposition resumed in the mid Holocene (∼6000 yr ago) up to the present. The A/I epimerization pathway constructed from Rottnest Island shows remarkable similarity to that of Bermuda in the North Atlantic (32° N Latitude). These findings suggest that, like Bermuda, the eolian activity on Rottnest occurred primarily during or shortly after interglacial highstands when the shoreline was near the present datum, rather than during glacial lowstands when the coastline was positioned 10–20 km to the west.


Sign in / Sign up

Export Citation Format

Share Document