scholarly journals Structural covariance and cortical reorganisation in schizophrenia: a MRI-based morphometric study

2018 ◽  
Vol 49 (3) ◽  
pp. 412-420 ◽  
Author(s):  
Lena Palaniyappan ◽  
Olha Hodgson ◽  
Vijender Balain ◽  
Sarina Iwabuchi ◽  
Penny Gowland ◽  
...  

AbstractBackgroundIn patients with schizophrenia, distributed abnormalities are observed in grey matter volume. A recent hypothesis posits that these distributed changes are indicative of a plastic reorganisation process occurring in response to a functional defect in neuronal information transmission. We investigated the structural covariance across various brain regions in early-stage schizophrenia to determine if indeed the observed patterns of volumetric loss conform to a coordinated pattern of structural reorganisation.MethodsStructural magnetic resonance imaging scans were obtained from 40 healthy adults and 41 age, gender and parental socioeconomic status matched patients with schizophrenia. Volumes of grey matter tissue were estimated at the regional level across 90 atlas-based parcellations. Group-level structural covariance was studied using a graph theoretical framework.ResultsPatients had distributed reduction in grey matter volume, with high degree of localised covariance (clustering) compared with controls. Patients with schizophrenia had reduced centrality of anterior cingulate and insula but increased centrality of the fusiform cortex, compared with controls. Simulating targeted removal of highly central nodes resulted in significant loss of the overall covariance patterns in patients compared with controls.ConclusionRegional volumetric deficits in schizophrenia are not a result of random, mutually independent processes. Our observations support the occurrence of a spatially interconnected reorganisation with the systematic de-escalation of conventional ‘hub’ regions. This raises the question of whether the morphological architecture in schizophrenia is primed for compensatory functions, albeit with a high risk of inefficiency.

2018 ◽  
Vol 38 (8) ◽  
pp. 1429-1435 ◽  
Author(s):  
Mark D. Russell ◽  
Thomas R. Barrick ◽  
Franklyn A. Howe ◽  
Nidhi Sofat

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. G. Ramesh Babu ◽  
Rajagopal Kadavigere ◽  
Prakashini Koteshwara ◽  
Brijesh Sathian ◽  
Kiranmai S. Rai

Abstract Studies provide evidence that practicing meditation enhances neural plasticity in reward processing areas of brain. No studies till date, provide evidence of such changes in Rajyoga meditation (RM) practitioners. The present study aimed to identify grey matter volume (GMV) changes in reward processing areas of brain and its association with happiness scores in RM practitioners compared to non-meditators. Structural MRI of selected participants matched for age, gender and handedness (n = 40/group) were analyzed using voxel-based morphometric method and Oxford Happiness Questionnaire (OHQ) scores were correlated. Significant increase in OHQ happiness scores were observed in RM practitioners compared to non-meditators. Whereas, a trend towards significance was observed in more experienced RM practitioners, on correlating OHQ scores with hours of meditation experience. Additionally, in RM practitioners, higher GMV were observed in reward processing centers—right superior frontal gyrus, left inferior orbitofrontal cortex (OFC) and bilateral precuneus. Multiple regression analysis showed significant association between OHQ scores of RM practitioners and reward processing regions right superior frontal gyrus, left middle OFC, right insula and left anterior cingulate cortex. Further, with increasing hours of RM practice, a significant positive association was observed in bilateral ventral pallidum. These findings indicate that RM practice enhances GMV in reward processing regions associated with happiness.


2021 ◽  
Author(s):  
Hyeokmoon Kweon ◽  
Gokhan Aydogan ◽  
Alain Dagher ◽  
Danilo Bzdok ◽  
Christian C Ruff ◽  
...  

Recent studies report that socioeconomic status (SES) correlates with brain structure. Yet, such findings are variable and little is known about underlying causes. We present a well-powered voxel-based analysis of grey matter volume (GMV) across levels of SES, finding many small SES effects widely distributed across the brain, including cortical, subcortical and cerebellar regions. We also construct a polygenic index of SES to control for the additive effects of common genetic variation related to SES, which attenuates observed SES-GMV relations, to different degrees in different areas. Remaining variance, which may be attributable to environmental factors, is substantially accounted for by body mass index, a marker for lifestyle related to SES. In sum, SES affects multiple brain regions through measurable genetic and environmental effects.


2020 ◽  
Vol 33 (1) ◽  
pp. e100057 ◽  
Author(s):  
Hui Li ◽  
Bin Zhang ◽  
Qiang Hu ◽  
Lanlan Zhang ◽  
Yi Jin ◽  
...  

BackgroundPalpitation is a common complaint in generalised anxiety disorder (GAD). Brain imaging studies have investigated the neural mechanism of heartbeat perception in healthy volunteers. This study explored the neuroanatomical differences of altered heartbeat perception in patients with GAD using structural MRI.AimsBased on the strong somatic-interoceptive symptoms in GAD, we explored the regional structural brain abnormalities involved in heartbeat perception in patients with GAD.MethodsThis study was applied to the a priori regions using neuroanatomical theories of heartbeat perception, including the insula, anterior cingulate cortex, supplementary motor area and prefrontal cortex. A total of 19 patients with GAD and 19 healthy control subjects were enrolled. We used the FMRIB Software Library voxel-based morphometry software for estimating the grey matter volume of these regions of interest and analysed the correlation between heartbeat perception sensitivity and the volume of abnormal grey matter.ResultsPatients with GAD showed a significantly decreased volume of grey matter in their left medial prefrontal cortex, right orbital frontal cortex and anterior cingulate cortex. The grey matter volume of the left medial prefrontal cortex negatively correlated with heartbeat perception sensitivity in patients with GAD.ConclusionsIt should be the first study that shows heartbeat perception is associated with brain structure in GAD. Our findings suggest that the frontal region may play an important role in aberrant heartbeat perception processing in patients with GAD, and this may be an underlying mechanism resulting in the abnormal cardiovascular complaints in GAD. This is hypothesised as a ‘top-down’ deficiency, especially in the medial prefrontal cortex. This will provide the foundation for a more targeted region for neuromodulation intervention in the future.


2011 ◽  
Vol 26 (S2) ◽  
pp. 934-934
Author(s):  
C. Kraus ◽  
M. Savli ◽  
A. Hahn ◽  
P. Baldinger ◽  
A. Höflich ◽  
...  

IntroductionThe subgenual part of the anterior cingulate cortex (sgACC) has been frequently reported to be structurally and cytoarchitectually changed in major depressive disorder (MDD) and is also a promising target in deep brain stimulation in treatment-resistant MDD. Furthermore, substantial evidence demonstrates a high density of serotonin-1A (5-HT1A) receptors in the sgACC, a key area involved in emotional processing.ObjectivesHere, we investigated the relationship between the 5-HT1A receptor in the sgACC and changes in regional grey matter volume with voxel-based morphometry.MethodsPET ([carbonyl-11C]WAY-100635) was used to quantify 5-HT1A receptor binding (BPND) together with structural magnetic resonance images from 32 healthy subjects (mean 26.68 ± 5.1 years; 17 women). Regression analysis was performed in SPM8 (p < .001 uncorr.) using sgACC 5-HT1A BPND as regressor, controlling for sex, age and total grey matter volume (GMV).Results5-HT1A BPND in the sgACC was positively associated with regional GMV in the medial temporal gyri (T=4.37) and nucleus accumbens bilaterally (T = 4.19). Furthermore, sgACC 5-HT1A binding was negatively correlated with GMV within the inferior temporal gyri (T = 5.22) and putamen bilaterally (T = 5.12).ConclusionsOur findings demonstrate structural relationships between sgACC 5-HT1A receptor binding and grey matter volume in the ventral striatum as well as in temporal regions, which both exhibit close neuronal connections with the sgACC. Moreover, the GMV of the ventral striatum has been reported to be decreased in patients with MDD. Conclusively, our results underpin the role of serotonergic neuronal transmission in cytoarchitectural processes within regions involved in the modulation of mood.


Cephalalgia ◽  
2018 ◽  
Vol 39 (4) ◽  
pp. 515-525 ◽  
Author(s):  
Yuan Wang ◽  
Qian Yang ◽  
Dongyuan Cao ◽  
David Seminowicz ◽  
Bethany Remeniuk ◽  
...  

Background Recent neuroimaging studies have reported grey matter alterations in primary trigeminal neuralgia patients. However, few studies have focused on quantitative measurements of trigeminal nerves and the interaction between trigeminal nerve volume and brain morphology, particularly grey matter volume. In this study, we investigated the link between trigeminal nerves and grey matter volume changes in primary trigeminal neuralgia patients compared to healthy controls. Moreover, we explored the association of structure of trigeminal nerves and grey matter to collected pain clinical variables. Methods Eighty participants (40 patients and 40 controls) were recruited for the study. All participants underwent MRI sessions and clinical pain assessment. Trigeminal nerve volume and whole brain grey matter volume were evaluated using quantitative imaging techniques. Sensory and affective pain rating indices were assessed using the visual analog scale and short-form McGill Pain Questionnaire. Mediation analysis was conducted to investigate the relationship between clinical pain variables and volumetric changes in trigeminal nerves and grey matter. Results Decreased trigeminal nerve volume was detected in primary trigeminal neuralgia patients compared to controls. Additionally, reduced grey matter volume was found in several regions associated with pain in primary trigeminal neuralgia subjects, including the insula, secondary somatosensory cortex, hippocampus, dorsal anterior cingulate cortex, precuneus, and several areas of the temporal lobe. Mediation analysis revealed that decreased trigeminal nerve volume drove grey matter volume abnormality of the left insula, and further led to increased pain ratings. Conclusion This study showed a predominantly direct effect of trigeminal nerve atrophy on clinical pain variables in primary trigeminal neuralgia patients, providing new insight into the pathophysiology of the disease. Trial registration ClinicalTrials.gov ID: NCT02713646


2014 ◽  
Vol 44 (16) ◽  
pp. 3491-3501 ◽  
Author(s):  
G. Modinos ◽  
P. Allen ◽  
M. Frascarelli ◽  
S. Tognin ◽  
L. Valmaggia ◽  
...  

Background.The majority of people at ultra high risk (UHR) of psychosis also present with co-morbid affective disorders such as depression or anxiety. The neuroanatomical and clinical impact of UHR co-morbidity is unknown.Method.We investigated group differences in grey matter volume using baseline magnetic resonance images from 121 participants in four groups: UHR with depressive or anxiety co-morbidity; UHR alone; major depressive disorder; and healthy controls. The impact of grey matter volume on baseline and longitudinal clinical/functional data was assessed with regression analyses.Results.The UHR-co-morbidity group had lower grey matter volume in the anterior cingulate cortex than the UHR-alone group, with an intermediate effect between controls and patients with major depressive disorder. In the UHR-co-morbidity group, baseline anterior cingulate volume was negatively correlated with baseline suicidality/self-harm and obsessive–compulsive disorder symptoms.Conclusions.Co-morbid depression and anxiety disorders contributed distinctive grey matter volume reductions of the anterior cingulate cortex in people at UHR of psychosis. These volumetric deficits were correlated with baseline measures of depression and anxiety, suggesting that co-morbid depressive and anxiety diagnoses should be carefully considered in future clinical and imaging studies of the psychosis high-risk state.


2018 ◽  
Vol 28 (8) ◽  
pp. 3296-3305 ◽  
Author(s):  
Pei-Lin Lee ◽  
Kun-Hsien Chou ◽  
Cheng-Hsien Lu ◽  
Hsiu-Ling Chen ◽  
Nai-Wen Tsai ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xiaohui Yan ◽  
Ke Jiang ◽  
Hui Li ◽  
Ziyi Wang ◽  
Kyle Perkins ◽  
...  

Brain abnormalities in the reading network have been repeatedly reported in individuals with developmental dyslexia (DD); however, it is still not totally understood where the structural and functional abnormalities are consistent/inconsistent across languages. In the current multimodal meta-analysis, we found convergent structural and functional alterations in the left superior temporal gyrus across languages, suggesting a neural signature of DD. We found greater reduction in grey matter volume and brain activation in the left inferior frontal gyrus in morpho-syllabic languages (e.g. Chinese) than in alphabetic languages, and greater reduction in brain activation in the left middle temporal gyrus and fusiform gyrus in alphabetic languages than in morpho-syllabic languages. These language differences are explained as consequences of being DD while learning a specific language. In addition, we also found brain regions that showed increased grey matter volume and brain activation, presumably suggesting compensations and brain regions that showed inconsistent alterations in brain structure and function. Our study provides important insights about the etiology of DD from a cross-linguistic perspective with considerations of consistency/inconsistency between structural and functional alterations.


2020 ◽  
Vol 3 (3) ◽  
pp. 152-161
Author(s):  
Weiping Li ◽  
Yu Xie ◽  
Tingting Yu ◽  
Wenbo Wu ◽  
Kun Wang ◽  
...  

Abstract APOE ε4 allele is the strongest predictor of Alzheimer’s disease (AD) risk, but its role in the association between the deep grey matter volume and cognitive impairment is still unclear. This study investigated the effects of APOE ε4 allele on this association in non-demented elders. We enrolled 24 patients with mild cognitive impairment (MCI) and 28 normal controls (NC), who underwent the whole brain 3DTIW MRI scanning, an APOE genotype test, and neuropsychological tests. The right thalamus (p = 0.026), the left pallidum (p = 0.026), and the bilateral amygdala (left p = 0.042, right p = 0.048) atrophied in MCI, and their volume were positively correlated with the cognitive scores (MoCA) (p < 0.05). Furthermore, the general liner regression model suggested that the correlation between the right thalamus and the putamen volume with MoCA scores was different in the APOE ε4 carriers and non- carriers. Compared with the non APOEε4 carriers, the right thalamus atrophied more rapidly when the cognition decline in APOE ε4 carriers, while the right putamen compensatory expansion to slow the rate of cognitive decline although failed. This suggested that the right putamen showed stronger compensation by increasing the volume at the early stage of cognitive impairments in the APOE ε4 carriers, while this compensatory change had been disappeared in the right thalamus. In conclusion, APOE ε4 allele modifies the correlation between the right thalamus, the right putamen, and MoCA scores, and it has a potential selective effect on the relationship between cognition and brain structures to some extent in non-demented elders.


Sign in / Sign up

Export Citation Format

Share Document