scholarly journals Cigarette smoking and personality: interrogating causality using Mendelian randomisation

2018 ◽  
Vol 49 (13) ◽  
pp. 2197-2205 ◽  
Author(s):  
Hannah M. Sallis ◽  
George Davey Smith ◽  
Marcus R. Munafò

AbstractBackgroundDespite the well-documented association between smoking and personality traits such as neuroticism and extraversion, little is known about the potential causal nature of these findings. If it were possible to unpick the association between personality and smoking, it may be possible to develop tailored smoking interventions that could lead to both improved uptake and efficacy.MethodsRecent genome-wide association studies (GWAS) have identified variants robustly associated with both smoking phenotypes and personality traits. Here we use publicly available GWAS summary statistics in addition to individual-level data from UK Biobank to investigate the link between smoking and personality. We first estimate genetic overlap between traits using LD score regression and then use bidirectional Mendelian randomisation methods to unpick the nature of this relationship.ResultsWe found clear evidence of a modest genetic correlation between smoking behaviours and both neuroticism and extraversion. We found some evidence that personality traits are causally linked to certain smoking phenotypes: among current smokers each additional neuroticism risk allele was associated with smoking an additional 0.07 cigarettes per day (95% CI 0.02–0.12, p = 0.009), and each additional extraversion effect allele was associated with an elevated odds of smoking initiation (OR 1.015, 95% CI 1.01–1.02, p = 9.6 × 10−7).ConclusionWe found some evidence for specific causal pathways from personality to smoking phenotypes, and weaker evidence of an association from smoking initiation to personality. These findings could be used to inform future smoking interventions or to tailor existing schemes.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jamie W. Robinson ◽  
Richard M. Martin ◽  
Spiridon Tsavachidis ◽  
Amy E. Howell ◽  
Caroline L. Relton ◽  
...  

AbstractGenome-wide association studies (GWAS) have discovered 27 loci associated with glioma risk. Whether these loci are causally implicated in glioma risk, and how risk differs across tissues, has yet to be systematically explored. We integrated multi-tissue expression quantitative trait loci (eQTLs) and glioma GWAS data using a combined Mendelian randomisation (MR) and colocalisation approach. We investigated how genetically predicted gene expression affects risk across tissue type (brain, estimated effective n = 1194 and whole blood, n = 31,684) and glioma subtype (all glioma (7400 cases, 8257 controls) glioblastoma (GBM, 3112 cases) and non-GBM gliomas (2411 cases)). We also leveraged tissue-specific eQTLs collected from 13 brain tissues (n = 114 to 209). The MR and colocalisation results suggested that genetically predicted increased gene expression of 12 genes were associated with glioma, GBM and/or non-GBM risk, three of which are novel glioma susceptibility genes (RETREG2/FAM134A, FAM178B and MVB12B/FAM125B). The effect of gene expression appears to be relatively consistent across glioma subtype diagnoses. Examining how risk differed across 13 brain tissues highlighted five candidate tissues (cerebellum, cortex, and the putamen, nucleus accumbens and caudate basal ganglia) and four previously implicated genes (JAK1, STMN3, PICK1 and EGFR). These analyses identified robust causal evidence for 12 genes and glioma risk, three of which are novel. The correlation of MR estimates in brain and blood are consistently low which suggested that tissue specificity needs to be carefully considered for glioma. Our results have implicated genes yet to be associated with glioma susceptibility and provided insight into putatively causal pathways for glioma risk.


2018 ◽  
Author(s):  
Yue Wu ◽  
Eleazar Eskin ◽  
Sriram Sankararaman

AbstractImputation has been widely utilized to aid and interpret the results of Genome-Wide Association Studies(GWAS). Imputation can increase the power to identify associations when the causal variant was not directly observed or typed in the GWAS. There are two broad classes of methods for imputation. The first class imputes the genotypes at the untyped variants given the genotypes at the typed variants and then performs a statistical test of association at the imputed variants. The second class of methods, summary statistic imputation, directly imputes the association statics at the untyped variants given the association statistics observed at the typed variants. This second class of methods is appealing as it tends to be computationally efficient while only requiring the summary statistics from a study while the former class requires access to individual-level data that can be difficult to obtain. The statistical properties of these two classes of imputation methods have not been fully understood. In this paper, we show that the two classes of imputation methods are equivalent, i.e., have identical asymptotic multivariate normal distributions with zero mean and minor variations in the covariance matrix, under some reasonable assumptions. Using this equivalence, we can understand the effect of imputation methods on power. We show that a commonly employed modification of summary statistic imputation that we term summary statistic imputation with variance re-weighting generally leads to a loss in power. On the other hand, our proposed method, summary statistic imputation without performing variance re-weighting, fully accounts for imputation uncertainty while achieving better power.


2016 ◽  
Author(s):  
Xiang Zhu ◽  
Matthew Stephens

Bayesian methods for large-scale multiple regression provide attractive approaches to the analysis of genome-wide association studies (GWAS). For example, they can estimate heritability of complex traits, allowing for both polygenic and sparse models; and by incorporating external genomic data into the priors they can increase power and yield new biological insights. However, these methods require access to individual genotypes and phenotypes, which are often not easily available. Here we provide a framework for performing these analyses without individual-level data. Specifically, we introduce a “Regression with Summary Statistics” (RSS) likelihood, which relates the multiple regression coefficients to univariate regression results that are often easily available. The RSS likelihood requires estimates of correlations among covariates (SNPs), which also can be obtained from public databases. We perform Bayesian multiple regression analysis by combining the RSS likelihood with previously-proposed prior distributions, sampling posteriors by Markov chain Monte Carlo. In a wide range of simulations RSS performs similarly to analyses using the individual data, both for estimating heritability and detecting associations. We apply RSS to a GWAS of human height that contains 253,288 individuals typed at 1.06 million SNPs, for which analyses of individual-level data are practically impossible. Estimates of heritability (52%) are consistent with, but more precise, than previous results using subsets of these data. We also identify many previously-unreported loci that show evidence for association with height in our analyses. Software is available at https://github.com/stephenslab/rss.


2018 ◽  
Author(s):  
Hannah M Sallis ◽  
George Davey Smith ◽  
Marcus R Munafò

AbstractBackgroundDespite the well-documented association between smoking and personality traits such as neuroticism and extraversion, little is known about the potential causal nature of these findings. If it were possible to unpick the association between personality and smoking, it may be possible to develop more targeted smoking cessation programmes that could lead to both improved uptake and efficacy.MethodsRecent genome-wide association studies (GWAS) have identified variants robustly associated with both smoking phenotypes and personality traits. Here we use publicly available GWAS summary statistics in addition to data from UK Biobank to investigate the link between smoking and personality. We first estimated genetic overlap between traits using LD score regression and then applied both one- and two-sample Mendelian randomization methods to unpick the nature of this relationship.ResultsWe found clear evidence of a modest genetic correlation between smoking behaviours and both neuroticism and extraversion, suggesting shared genetic aetiology. We found some evidence to suggest an association between neuroticism and increased smoking initiation. We also found some evidence that personality traits appear to be causally linked to certain smoking phenotypes: higher neuroticism and heavier cigarette consumption, and higher extraversion and increased odds of smoking initiation. The latter finding could lead to more targeted smoking prevention programmes.ConclusionThe association between neuroticism and cigarette consumption lends support to the self-medication hypothesis, while the association between extraversion and smoking initiation could lead to more targeted smoking prevention programmes.


2020 ◽  
Author(s):  
Jamie W Robinson ◽  
Richard M Martin ◽  
Spiridon Tsavachidis ◽  
Amy E Howell ◽  
Caroline L Relton ◽  
...  

AbstractGenome-wide association studies (GWAS) have discovered 27 loci associated with glioma risk. Whether these loci are causally implicated in glioma risk, and how risk differs across tissues, has yet to be systematically explored.We integrated multi-tissue expression quantitative trait loci (eQTLs) and glioma GWAS data using a combined Mendelian randomisation (MR) and colocalisation approach. We investigated how genetically predicted gene expression affects risk across tissue type (brain, estimated effective n=1,194 and whole blood, n=31,684) and glioma subtype (all glioma (7,400 cases, 8,257 controls) glioblastoma (GBM, 3,112 cases) and non-GBM gliomas (2,411 cases)). We also leveraged tissuespecific eQTLs collected from 13 brain tissues (n=114 to 209).The MR and colocalisation results suggested that genetically predicted increased gene expression of 12 genes were associated with glioma, GBM and/or non-GBM risk, three of which are novel glioma susceptibility genes (RETREG2/FAM134A, FAM178B and MVB12B/FAM125B). The effect of gene expression appears to be relatively consistent across glioma subtype diagnoses. Examining how risk differed across 13 brain tissues highlighted five candidate tissues (cerebellum, cortex, and the putamen, nucleus accumbens and caudate basal ganglia) and four previously implicated genes (JAK1, STMN3, PICK1 and EGFR).These analyses identified robust causal evidence for 12 genes and glioma risk, three of which are novel. The correlation of MR estimates in brain and blood are consistently low which suggested that tissue specificity needs to be carefully considered for glioma. Our results have implicated genes yet to be associated with glioma susceptibility and provided insight into putatively causal pathways for glioma risk.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Gibran Hemani ◽  
Jie Zheng ◽  
Benjamin Elsworth ◽  
Kaitlin H Wade ◽  
Valeriia Haberland ◽  
...  

Results from genome-wide association studies (GWAS) can be used to infer causal relationships between phenotypes, using a strategy known as 2-sample Mendelian randomization (2SMR) and bypassing the need for individual-level data. However, 2SMR methods are evolving rapidly and GWAS results are often insufficiently curated, undermining efficient implementation of the approach. We therefore developed MR-Base (http://www.mrbase.org): a platform that integrates a curated database of complete GWAS results (no restrictions according to statistical significance) with an application programming interface, web app and R packages that automate 2SMR. The software includes several sensitivity analyses for assessing the impact of horizontal pleiotropy and other violations of assumptions. The database currently comprises 11 billion single nucleotide polymorphism-trait associations from 1673 GWAS and is updated on a regular basis. Integrating data with software ensures more rigorous application of hypothesis-driven analyses and allows millions of potential causal relationships to be efficiently evaluated in phenome-wide association studies.


2019 ◽  
Vol 50 (14) ◽  
pp. 2435-2443 ◽  
Author(s):  
Robyn E. Wootton ◽  
Rebecca C. Richmond ◽  
Bobby G. Stuijfzand ◽  
Rebecca B. Lawn ◽  
Hannah M. Sallis ◽  
...  

AbstractBackgroundSmoking prevalence is higher amongst individuals with schizophrenia and depression compared with the general population. Mendelian randomisation (MR) can examine whether this association is causal using genetic variants identified in genome-wide association studies (GWAS).MethodsWe conducted two-sample MR to explore the bi-directional effects of smoking on schizophrenia and depression. For smoking behaviour, we used (1) smoking initiation GWAS from the GSCAN consortium and (2) we conducted our own GWAS of lifetime smoking behaviour (which captures smoking duration, heaviness and cessation) in a sample of 462690 individuals from the UK Biobank. We validated this instrument using positive control outcomes (e.g. lung cancer). For schizophrenia and depression we used GWAS from the PGC consortium.ResultsThere was strong evidence to suggest smoking is a risk factor for both schizophrenia (odds ratio (OR) 2.27, 95% confidence interval (CI) 1.67–3.08, p < 0.001) and depression (OR 1.99, 95% CI 1.71–2.32, p < 0.001). Results were consistent across both lifetime smoking and smoking initiation. We found some evidence that genetic liability to depression increases smoking (β = 0.091, 95% CI 0.027–0.155, p = 0.005) but evidence was mixed for schizophrenia (β = 0.022, 95% CI 0.005–0.038, p = 0.009) with very weak evidence for an effect on smoking initiation.ConclusionsThese findings suggest that the association between smoking, schizophrenia and depression is due, at least in part, to a causal effect of smoking, providing further evidence for the detrimental consequences of smoking on mental health.


2020 ◽  
Vol 117 (21) ◽  
pp. 11608-11613 ◽  
Author(s):  
Marcelo Blatt ◽  
Alexander Gusev ◽  
Yuriy Polyakov ◽  
Shafi Goldwasser

Genome-wide association studies (GWASs) seek to identify genetic variants associated with a trait, and have been a powerful approach for understanding complex diseases. A critical challenge for GWASs has been the dependence on individual-level data that typically have strict privacy requirements, creating an urgent need for methods that preserve the individual-level privacy of participants. Here, we present a privacy-preserving framework based on several advances in homomorphic encryption and demonstrate that it can perform an accurate GWAS analysis for a real dataset of more than 25,000 individuals, keeping all individual data encrypted and requiring no user interactions. Our extrapolations show that it can evaluate GWASs of 100,000 individuals and 500,000 single-nucleotide polymorphisms (SNPs) in 5.6 h on a single server node (or in 11 min on 31 server nodes running in parallel). Our performance results are more than one order of magnitude faster than prior state-of-the-art results using secure multiparty computation, which requires continuous user interactions, with the accuracy of both solutions being similar. Our homomorphic encryption advances can also be applied to other domains where large-scale statistical analyses over encrypted data are needed.


2020 ◽  
Author(s):  
Ruth E Mitchell ◽  
Kirsty Bates ◽  
Robyn E Wootton ◽  
Adil Harroud ◽  
J. Brent Richards ◽  
...  

AbstractThe causes of multiple sclerosis (MS) remain unknown. Smoking has been associated with MS in observational studies and is often thought of as an environmental risk factor. We used two-sample Mendelian Randomization (MR) to examined whether this association is causal using genetic variants identified in genome-wide association studies (GWAS) as associated with smoking. We assessed both smoking initiation and lifetime smoking behaviour (which captures smoking duration, heaviness and cessation). There was very limited evidence for a meaningful effect of smoking on MS susceptibility was measured using summary statistics from the International Multiple Sclerosis Genetics Consortium (IMSGC) meta-analysis, including 14,802 cases and 26,703 controls. There was no clear evidence for an effect of smoking on the risk of developing MS (smoking initiation: odds ratio [OR] 1.03, 95% confidence interval [CI] 0.92-1.61; lifetime smoking: OR 1.10, 95% CI 0.87-1.40). These findings suggest that smoking does not have a detrimental consequence on MS susceptibility. Further work is needed to determine the causal effect of smoking on MS progression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Zhang ◽  
Jing Chen ◽  
Zhiqun Yin ◽  
Lanbing Wang ◽  
Lihua Peng

AbstractObservational studies suggested a bidirectional correlation between depression and metabolic syndrome (MetS) and its components. However, the causal associations between them remained unclear. We aimed to investigate whether genetically predicted depression is related to the risk of MetS and its components, and vice versa. We performed a bidirectional two-sample Mendelian randomization (MR) study using summary-level data from the most comprehensive genome-wide association studies (GWAS) of depression (n = 2,113,907), MetS (n = 291,107), waist circumference (n = 462,166), hypertension (n = 463,010) fasting blood glucose (FBG, n = 281,416), triglycerides (n = 441,016), high-density lipoprotein cholesterol (HDL-C, n = 403,943). The random-effects inverse-variance weighted (IVW) method was applied as the primary method. The results identified that genetically predicted depression was significantly positive associated with risk of MetS (OR: 1.224, 95% CI: 1.091–1.374, p = 5.58 × 10−4), waist circumference (OR: 1.083, 95% CI: 1.027–1.143, p = 0.003), hypertension (OR: 1.028, 95% CI: 1.016–1.039, p = 1.34 × 10−6) and triglycerides (OR: 1.111, 95% CI: 1.060–1.163, p = 9.35 × 10−6) while negative associated with HDL-C (OR: 0.932, 95% CI: 0.885–0.981, p = 0.007) but not FBG (OR: 1.010, 95% CI: 0.986–1.034, p = 1.34). No causal relationships were identified for MetS and its components on depression risk. The present MR analysis strength the evidence that depression is a risk factor for MetS and its components (waist circumference, hypertension, FBG, triglycerides, and HDL-C). Early diagnosis and prevention of depression are crucial in the management of MetS and its components.


Sign in / Sign up

Export Citation Format

Share Document