scholarly journals Dendroclimatology in the Eastern Mediterranean

Radiocarbon ◽  
2014 ◽  
Vol 56 (04) ◽  
pp. S61-S68
Author(s):  
Ramzi Touchan ◽  
David M. Meko ◽  
Kevin J. Anchukaitis

Dendroclimatology in the Eastern Mediterranean (EM) region has made important contributions to the understanding of climate variability on timescales of decades to centuries. These contributions, beginning in the mid-20th century, have value for resource management, archaeology, and climatology. A gradually expanding tree-ring network developed by the first author over the past 15 years has been the framework for some of the most important recent advances in EM dendroclimatology. The network, now consisting of 79 sites, has been widely applied in large-scale climatic reconstruction and in helping to identify drivers of climatic variation on regional to global spatial scales. This article reviews EM dendroclimatology and highlights contributions on the national and international scale.

Radiocarbon ◽  
2014 ◽  
Vol 56 (4) ◽  
pp. S61-S68 ◽  
Author(s):  
Ramzi Touchan ◽  
David M. Meko ◽  
Kevin J. Anchukaitis

Dendroclimatology in the Eastern Mediterranean (EM) region has made important contributions to the understanding of climate variability on timescales of decades to centuries. These contributions, beginning in the mid-20th century, have value for resource management, archaeology, and climatology. A gradually expanding tree-ring network developed by the first author over the past 15 years has been the framework for some of the most important recent advances in EM dendroclimatology. The network, now consisting of 79 sites, has been widely applied in large-scale climatic reconstruction and in helping to identify drivers of climatic variation on regional to global spatial scales. This article reviews EM dendroclimatology and highlights contributions on the national and international scale.


1979 ◽  
Vol 12 (1) ◽  
pp. 18-46 ◽  
Author(s):  
Harold C. Fritts ◽  
G. Robert Lofgren ◽  
Geoffrey A. Gordon

Spatial anomalies of tree-ring chronologies can provide information on high-frequency spatial anomalies in paleoclimate representing droughts, colder-than-normal intervals, and other synoptic-scale features. Examples are presented in which 65 tree-ring chronologies are calibrated with spatial anomalies in North American meteorological records of seasonal temperature and precipitation, and with sea-level pressure over the North American and North Pacific sectors. Multivariate transfer functions are obtained that scale and convert the past spatial variations in the tree-ring record into estimates of past variations in the meteorological record. Objective verifications of the reconstructions are obtained using independent meteorological observations for time periods other than those used in the calibration. Historical information or other proxy data from the 19th century are also used for verifying the decadal (or longer) and regional reconstructions and for identifying strengths and weaknesses of the various sources of information. The reconstructed winter and summer temperatures for the United States and southwestern Canada and winter precipitation for the Columbia Basin and California during the 17th through 19th centuries were found to differ from the 20th century means with large-scale variations evident. Extreme winters similar to 1976–77 are also identified and found to be more frequent in the past, especially in the 17th century. The climatic reconstructions in this time domain are dominated by high-frequency, synoptic-scale fluctuations that can be interpreted as cyclonic-scale changes in atmospheric circulation. Such reconstructions may be useful for testing various climatic models and estimates developed primarily from 20th-century meteorological data against the longer estimated record for the 17th through 19th centuries.


2020 ◽  
Author(s):  
Justin T. Maxwell ◽  
Grant L. Harley ◽  
Trevis J. Matheus ◽  
Brandon M. Strange ◽  
Kayla Van Aken ◽  
...  

Abstract. Our understanding of the natural variability of hydroclimate before the instrumental period (ca. 1900 in the United States; US) is largely dependent on tree-ring-based reconstructions. Large-scale soil moisture reconstructions from a network of tree-ring chronologies have greatly improved our understanding of the spatial and temporal variability in hydroclimate conditions, particularly extremes of both drought and pluvial (wet) events. However, certain regions within these large-scale reconstructions in the US have a sparse network of tree-ring chronologies. Further, several chronologies were collected in the 1980s and 1990s, thus our understanding of the sensitivity of radial growth to soil moisture in the US is based on a period that experienced multiple extremely severe droughts and neglects the impacts of recent, rapid global change. In this study, we expanded the tree-ring network of the Ohio River Valley in the US, a region with sparse coverage. We used a total of 72 chronologies across 15 species to examine how increasing the density of the tree-ring network influences the representation of reconstructing the Palmer Meteorological Drought Index (PMDI). Further, we tested how the sampling date influenced the reconstruction models by creating reconstructions that ended in the year 1980 and compared them to reconstructions ending in 2010 from the same chronologies. We found that increasing the density of the tree-ring network resulted in reconstructed values that better matched the spatial variability of instrumentally recorded droughts and to a lesser extent, pluvials. By sampling tree in 2010 compared to 1980, the sensitivity of tree rings to PMDI decreased in the southern portion of our region where severe drought conditions have been absent over recent decades. We emphasize the need of building a high-density tree-ring network to better represent the spatial variability of past droughts and pluvials. Further, chronologies on the International Tree-Ring Data Bank need updating regularly to better understand how the sensitivity of tree rings to climate may vary through time.


2020 ◽  
Vol 16 (2) ◽  
pp. 453-474
Author(s):  
Camilo Melo-Aguilar ◽  
J. Fidel González-Rouco ◽  
Elena García-Bustamante ◽  
Norman Steinert ◽  
Johann H. Jungclaus ◽  
...  

Abstract. Borehole-based reconstruction is a well-established technique to recover information of the past climate variability based on two main hypotheses: (1) past ground surface temperature (GST) histories can be recovered from borehole temperature profiles (BTPs); (2) the past GST evolution is coupled to surface air temperature (SAT) changes, and thus, past SAT changes can be recovered from BTPs. Compared to some of the last millennium (LM) proxy-based reconstructions, previous studies based on the borehole technique indicate a larger temperature increase during the last few centuries. The nature of these differences has fostered the assessment of this reconstruction technique in search of potential causes of bias. Here, we expand previous works to explore potential methodological and physical biases using pseudo-proxy experiments with the Community Earth System Model Last Millennium Ensemble (CESM-LME). A heat-conduction forward model driven by simulated surface temperature is used to generate synthetic BTPs that are then inverted using singular value decomposition. This procedure is applied to the set of simulations that incorporates all of the LM external forcing factors as well as those that consider the concentration of the green house gases (GHGs) and the land use land cover (LULC) changes forcings separately. The results indicate that methodological issues may impact the representation of the simulated GST at different spatial scales, with the temporal logging of the BTPs as the main sampling issue that may lead to an underestimation of the simulated GST 20th-century trends. Our analysis also shows that in the surrogate reality of the CESM-LME the GST does not fully capture the SAT warming during the industrial period, and thus, there may be a further underestimation of the past SAT changes due to physical processes. Globally, this effect is mainly influenced by the GHG forcing, whereas regionally, LULC changes and other forcings factors also contribute. These findings suggest that despite the larger temperature increase suggested by the borehole estimations during the last few centuries of the LM relative to some other proxy reconstructions, both the methodological and physical biases would result in a underestimation of the 20th-century warming.


2010 ◽  
Vol 115 (D22) ◽  
Author(s):  
N. Davi ◽  
G. Jacoby ◽  
K. Fang ◽  
J. Li ◽  
R. D'Arrigo ◽  
...  

2007 ◽  
Vol 3 (1) ◽  
pp. 119-128 ◽  
Author(s):  
O. Solomina ◽  
G. Wiles ◽  
T. Shiraiwa ◽  
R. D'Arrigo

Abstract. Tree ring, ice core and glacial geologic histories for the past several centuries offer an opportunity to characterize climate variability and to identify the key climate parameters forcing glacier expansion in Kamchatka over the past 400 years. A newly developed larch ring-width chronology (AD 1632–2004) is presented that is sensitive to past summer temperature variability. Individual low growth years in the larch record are associated with several known and proposed volcanic events from the Northern Hemisphere. The comparison of ring width minima and those of Melt Feature Index of Ushkovsky ice core helps confirm a 1–3 year dating accuracy~for this ice core series over the late 18th to 20th centuries. Decadal variations of low summer temperatures (tree-ring record) and high annual precipitation (ice core record) are broadly consistent with intervals of positive mass balances measured and estimated at several glaciers in 20th century, and with moraine building. According to the tree-ring data the 1860s–1880s were the longest coldest interval in the last 350 years. The latest part of this period (1880s) coincided with the positive anomaly in accumulation. This coincidence led to a positive mass balance, which is most likely responsible for glacier advances and moraine deposition of the end of 19th-early 20th centuries. As well as in some other high latitude regions (Spitsbergen, Polar Urals, Franz Jozef Land etc.) in Kamchatka these advances marked the last millennium glacial maximum. In full agreement with subsequent summer warming trend, inferred both from instrumental and tree ring data, glacier advances since 1880s have been less extensive. The late 18th century glacier expansion coincides with the inferred summer temperature decrease recorded by the ring width chronology. However, both the advance and the summer temperature decrease were less prominent that in the end of 19th century. Comparisons of the glacier history in Kamchatka with records from Alaska and the Canadian Rockies suggests broadly consistent intervals of glacier expansion and inferred summer cooling during solar irradiance minima.


1983 ◽  
Vol 13 (4) ◽  
pp. 539-547 ◽  
Author(s):  
J. R. Blais

The history of spruce budworm (Choristoneurafumiferana (Clem.)) outbreaks for the past 200 to 300 years, for nine regions in eastern Canada, indicates that outbreaks have occurred more frequently in the 20th century than previously. Regionally, 21 outbreaks took place in the past 80 years compared with 9 in the preceding 100 years. Earlier infestations were restricted to specific regions, but in the 20th century they have coalesced and increased in size, the outbreaks of 1910, 1940, and 1970 having covered 10, 25, and 55 million ha respectively. Reasons for the increase in frequency, extent, and severity of outbreaks appear mostly attributable to changes caused by man, in the forest ecosystem. Clear-cutting of pulpwood stands, fire protection, and use of pesticides against budworm favor fir–spruce stands, rendering the forest more prone to budworm attack. The manner and degree to which each of these practices has altered forest composition is discussed. In the future, most of these practices are expected to continue and their effects could intensify, especially in regions of recent application. Other practices, including large-scale planting of white spruce, could further increase the susceptibility of forest stands. Forest management, aimed at reducing the occurrence of extensive fir–spruce stands, has been advocated as a long-term solution to the budworm problem. The implementation of this measure at a time when man's actions result in the proliferation of fir presents a most serious challenge to forest managers.


Sign in / Sign up

Export Citation Format

Share Document