Gender issues in small-scale family poultry production: experiences with Newcastle Disease and Highly Pathogenic Avian Influenza control

2009 ◽  
Vol 65 (2) ◽  
pp. 231-240 ◽  
Author(s):  
B. Bagnol
2021 ◽  
Author(s):  
Pierre Bessière ◽  
Thomas Figueroa ◽  
Amelia Coggon ◽  
Charlotte Foret-Lucas ◽  
Alexandre Houffschmitt ◽  
...  

Highly pathogenic avian influenza viruses (HPAIV) emerge from low pathogenic avian influenza viruses (LPAIV) through the introduction of basic amino acids at the hemagglutinin (HA) cleavage site. Following viral evolution, the newly formed HPAIV likely represents a minority variant within the index host, predominantly infected with the LPAIV precursor. Using reverse-genetics engineered H5N8 viruses differing solely at the HA cleavage, we tested the hypothesis that the interaction between the minority HPAIV and the majority LPAIV could modulate the risk of HPAIV emergence and that the nature of the interaction could depend on the host species. In chickens, we observed that the H5N8 LP increased H5N8 HP replication and pathogenesis. By contrast, the H5N8 LP antagonized H5N8 HP replication and pathogenesis in ducks. Ducks mounted a more potent antiviral innate immune response than chickens against the H5N8 LP , which correlated with H5N8 HP inhibition. These data provide experimental evidence that HPAIV may be more likely to emerge in chickens than in ducks and underscore the importance of within-host viral variants interactions in viral evolution. IMPORTANCE Highly pathogenic avian influenza viruses represent a threat to poultry production systems and to human health because of their impact on food security and because of their zoonotic potential. It is therefore crucial to better understand how these viruses emerge. Using a within-host competition model between highly and low pathogenic avian influenza viruses, we provide evidence that highly pathogenic avian influenza viruses could be more likely to emerge in chickens than in ducks. These results have important implications for highly pathogenic avian influenza virus emergence prevention and they underscore the importance of within-host viral variants interactions in virus evolution.


2021 ◽  
Vol 50 (Supplement_1) ◽  
Author(s):  
Dae-sung Yoo ◽  
Chun Byung Chul

Abstract Background Highly pathogenic avian influenza (HPAI), a zoonotic infectious disease, has been considered a severe threat to public health. The fundamental prevention and control strategy against HPAI includes minimizing the outbreaks of poultry holdings where the virus primarily spreads through animal trade and poultry production associated vehicle movement (PPVM). However, very few attempts have been made to elucidate the association between PPVM and HPAI transmission compared to studies on poultry trade. Therefore, our study aimed to elucidate the role of PPVM on HPAI transmission. Methods We performed network analysis using PPVM data based on a global positioning system (GPS), with phylogenetic information of the HPAI virus for reliable estimation. Moreover, the contribution of PPVM to HPAI infection was estimated by Bayesian inference. Results The network analysis revealed that the connection via PPVM between the same genetic group of infected premises (IPs) was more prevalent than that of different genotype IPs. Moreover, the similarity of farm poultry species and the overlapped integrators between inter-linked IPs was associated with potential transmission route formation. Additionally, the contribution of PPVM among phylogenetically clustered IPs was estimated to have 28.25% of HPAI infections in IPs on average. Conclusions HPAI control strategies including targeted movement restriction and standstill should be established against the HPAI transmission via PPVM. Key messages This is a solid and novel study depicting the need for combining epidemiological analysis with data regarding molecular epidemiology of pathogens.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Olatunde Babatunde Akanbi ◽  
Victor Olusegun Taiwo

Commercial layer-type, pullet, cockerel, and broiler chicken flocks infected with highly pathogenic avian influenza (HPAI) H5N1 in Nigeria between 2006 and 2008 were investigated for morbidity, mortality, and pathology. Of the one hundred and fifty-three (153) farms confirmed with HPAI infection, one hundred and twenty-seven (127) were layer-type farms, nine (9) were pullet and broiler farms each, and eight (8) were cockerel rearing farms. This study revealed the morbidity and mortality of a total of 939,620 commercial layer chickens, 16,421 pullets, 3,109 cockerels, and 6,433 broilers. Mortality rates were 11.11% in commercial layers, 26.84% in pullets, 45.51% in cockerels, and 73.92% in broilers in a total of eighteen (18) states and the Federal Capital Territory, Abuja. A total of 316 carcasses were examined of which 248 were commercial layer, 25 were pullet, 14 were cockerel, and 29 were broiler. Main clinical and pathologic findings were observed in the nervous, circulatory, respiratory, integumentary, musculoskeletal, hemopoietic, gastrointestinal, and reproductive systems and, occasionally, lesions were generally nonspecific and multisystemic. Lesions occurred more frequently, severely, and in most of the carcasses examined, irrespective of chicken type.


2014 ◽  
Vol 143 (8) ◽  
pp. 1632-1642 ◽  
Author(s):  
M. McLAWS ◽  
W. PRIYONO ◽  
B. BETT ◽  
S. AL-QAMAR ◽  
I. CLAASSEN ◽  
...  

SUMMARYA large-scale mass vaccination campaign was carried out in Java, Indonesia in an attempt to control outbreaks of highly pathogenic avian influenza (HPAI) in backyard flocks and commercial smallholder poultry. Sero-monitoring was conducted in mass vaccination and control areas to assess the proportion of the target population with antibodies against HPAI and Newcastle disease (ND). There were four rounds of vaccination, and samples were collected after each round resulting in a total of 27 293 samples. Sampling was performed irrespective of vaccination status. In the mass vaccination areas, 20–45% of poultry sampled had a positive titre to H5 after each round of vaccination, compared to 2–3% in the control group. In the HPAI + ND vaccination group, 12–25% of the population had positive ND titres, compared to 5–13% in the areas without ND vaccination. The level of seropositivity varied by district, age of the bird, and species (ducks vs. chickens).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dae-Sung Yoo ◽  
Byung chul Chun ◽  
Younjung Kim ◽  
Kwang-Nyeong Lee ◽  
Oun-Kyoung Moon

AbstractHighly pathogenic avian influenza (HPAI) in poultry holdings commonly spreads through animal trade, and poultry production and health-associated vehicle (PPHaV) movement. To effectively control the spread of disease, it is essential that the contact structure via those movements among farms is thoroughly explored. However, few attempts have been made to scrutinize PPHaV movement compared to poultry trade. Therefore, our study aimed to elucidate the role of PPHaV movement on HPAI transmission. We performed network analysis using PPHaV movement data based on a global positioning system, with phylogenetic information of the isolates during the 2016–2017 HPAI H5N6 epidemic in the Republic of Korea. Moreover, the contribution of PPHaV movement to the spread of HPAI was estimated by Bayesian modeling. The network analysis revealed that there was the relationship between phylogenetic clusters and the contact network via PPHaV movement. Furthermore, the similarity of farm poultry species and the shared integrators between inter-linked infected premises (IPs) were associated with ties within the same phylogenetic clusters. Additionally, PPHaV movement among phylogenetically clustered IPs was estimated to contribute to approximately 30% of HPAI H5N6 infections in IPs on average. This study provides insight into how HPAI spread via PPHaV movement and scientific basis for control strategies.


Sign in / Sign up

Export Citation Format

Share Document