scholarly journals Relations between photospheric structure and X-ray emission

1996 ◽  
Vol 176 ◽  
pp. 477-484
Author(s):  
M. Kürster

The relation between photospheric and coronal active regions in late–type stars is studied from two different points of departure. First, I report on 5 years of ROSAT X–ray monitoring of the active young K–star AB Dor. I compare the X–ray data with 16 years of V–band brightness monitoring showing a 10–year decline between 1978 and 1989 and a subsequent rise phase. Quite differently, the X–ray flux of AB Dor (while exhibiting strong variability on time scales of minutes to weeks) reveals no pronounced long–term trend over the 5 years of the program. This supports the concept of a saturated corona. Second, I present rotationally modulated ROSAT X–ray light curves of three active stars (AB Dor, CF Tuc, YY Men) and compare them with contemporaneous Doppler images. I demonstrate that it is possible to explain the X–ray light curves by coronal emission regions that are spatially related with photospheric active regions. I discuss the concept of X–ray bright loops connecting the major star spot complexes.

2020 ◽  
Vol 636 ◽  
pp. A49 ◽  
Author(s):  
M. Coffaro ◽  
B. Stelzer ◽  
S. Orlando ◽  
J. Hall ◽  
T. S. Metcalfe ◽  
...  

Chromospheric Ca II activity cycles are frequently found in late-type stars, but no systematic programs have been created to search for their coronal X-ray counterparts. The typical time scale of Ca II activity cycles ranges from years to decades. Therefore, long-lasting missions are needed to detect the coronal counterparts. The XMM-Newton satellite has so far detected X-ray cycles in five stars. A particularly intriguing question is at what age (and at what activity level) X-ray cycles set in. To this end, in 2015 we started the X-ray monitoring of the young solar-like star ɛ Eridani, previously observed on two occasions: in 2003 and in early 2015, both by XMM-Newton. With an age of 440 Myr, it is one of the youngest solar-like stars with a known chromospheric Ca II cycle. We collected the most recent Mount Wilson S-index data available for ɛ Eridani, starting from 2002, including previously unpublished data. We found that the Ca II cycle lasts 2.92 ± 0.02 yr, in agreement with past results. From the long-term XMM-Newton lightcurve, we find clear and systematic X-ray variability of our target, consistent with the chromospheric Ca II cycle. The average X-ray luminosity is 2 × 1028erg s−1, with an amplitude that is only a factor of 2 throughout the cycle. We apply a new method to describe the evolution of the coronal emission measure distribution of ɛ Eridani in terms of solar magnetic structures: active regions, cores of active regions, and flares covering the stellar surface at varying filling fractions. Combinations of these three types of magnetic structures can only describe the observed X-ray emission measure of ɛ Eridani if the solar flare emission measure distribution is restricted to events in the decay phase. The interpretation is that flares in the corona of ɛ Eridani last longer than their solar counterparts. We ascribe this to the lower metallicity of ɛ Eridani. Our analysis also revealed that the X-ray cycle of ɛ Eridani is strongly dominated by cores of active regions. The coverage fraction of cores throughout the cycle changes by the same factor as the X-ray luminosity. The maxima of the cycle are characterized by a high percentage of covering fraction of the flares, consistent with the fact that flaring events are seen in the corresponding short-term X-ray lightcurves predominately at the cycle maxima. The high X-ray emission throughout the cycle of ɛ Eridani is thus explained by the high percentage of magnetic structures on its surface.


2021 ◽  
Author(s):  
Anh Phong Tran ◽  
Christopher J. Tralie ◽  
Caroline Moosmüller ◽  
Zehor Belkhatir ◽  
José Reyes ◽  
...  

Radiation exposure of healthy cells can halt cell cycle temporarily or permanently. In this work, two single cell datasets that monitored the time evolution of p21 and p53, one subjected to gamma irradiation and the other to x-ray irradiation, are analyzed to uncover the dynamics of this process. New insights into the biological mechanisms were found by decomposing the p53 and p21 signals into transient and oscillatory components. Through the use of dynamic time warping on the oscillatory components of the two signals, we found that p21 signaling lags behind its lead signal, p53, by about 3.5 hours with oscillation periods of around 6 hours. Additionally, through various quantification methods, we showed how p21 levels, and to a lesser extent p53 levels, dictate whether the cells are arrested in their cell cycle and how fast these cells divide depending on their long-term trend in these signals.


Author(s):  
Albert E. Beaton ◽  
James R. Chromy
Keyword(s):  

2021 ◽  
Vol 38 (10) ◽  
pp. 1791-1802
Author(s):  
Peiyan Chen ◽  
Hui Yu ◽  
Kevin K. W. Cheung ◽  
Jiajie Xin ◽  
Yi Lu

AbstractA dataset entitled “A potential risk index dataset for landfalling tropical cyclones over the Chinese mainland” (PRITC dataset V1.0) is described in this paper, as are some basic statistical analyses. Estimating the severity of the impacts of tropical cyclones (TCs) that make landfall on the Chinese mainland based on observations from 1401 meteorological stations was proposed in a previous study, including an index combining TC-induced precipitation and wind (IPWT) and further information, such as the corresponding category level (CAT_IPWT), an index of TC-induced wind (IWT), and an index of TC-induced precipitation (IPT). The current version of the dataset includes TCs that made landfall from 1949–2018; the dataset will be extended each year. Long-term trend analyses demonstrate that the severity of the TC impacts on the Chinese mainland have increased, as embodied by the annual mean IPWT values, and increases in TCinduced precipitation are the main contributor to this increase. TC Winnie (1997) and TC Bilis (2006) were the two TCs with the highest IPWT and IPT values, respectively. The PRITC V1.0 dataset was developed based on the China Meteorological Administration’s tropical cyclone database and can serve as a bridge between TC hazards and their social and economic impacts.


Sign in / Sign up

Export Citation Format

Share Document