scholarly journals 12. The Nuclei of Planetary Nebulae as Progenitors of White Dwarfs

1971 ◽  
Vol 42 ◽  
pp. 77-78
Author(s):  
C. R. O'Dell

Stellar evolution is characterized by fast and slow phases. Usually the periods of rapid change are difficult to follow observationally; but, this does not seem to be the case when passing through the planetary nebula stage. Because of their high intrinsic luminosities and easy identification, it is possible to identify and study these objects and their central stars rather completely. It is quite relevant to discuss these objects at a symposium on white dwarfs since the central stars may be in the immediate progenitor stage before white dwarfs. The actual picture of the evolution of the nuclei has changed rather little in the past few years and is the subject of an earlier review article (O'Dell, 1968) to which the reader is referred.

1981 ◽  
Vol 59 ◽  
pp. 339-344
Author(s):  
Volker Weidemann

The relation between initial and final masses is discussed under consideration of changing theoretical concepts and new empirical data on masses of white dwarfs and nuclei of planetary nebulae. It is concluded that presently adopted schemes of evolution need revision, and that no universal relation exists.The strongest evidence for large amounts of mass loss during stellar evolution has been provided by the existence of white dwarfs – with masses typically of 0.6 m (m = M/Mʘ), much below the galactic turn-off masses – and by the phenomenon of planetary nebula production before a star descends into the white dwarf region.


1978 ◽  
Vol 76 ◽  
pp. 305-313 ◽  
Author(s):  
B. Zuckerman

Although rare, planetary nebulae have been extensively studied by astronomers. This affection is certainly due in part to the beauty of the gaseous nebulae but it is also due to the belief that many, probably most, stars of intermediate mass (1–4 M) become planetary nebulae at least once during their lifetimes. If the planetary nebula is an (almost) inevitable stage in stellar evolution, it is important to determine its evolutionary precursors and followers. The latter are likely to be the white dwarfs and the former are generally believed to be red giants. With the advent of infrared and radio techniques it now appears possible, for the first time, to specify the immediate progenitors of planetary nebulae.


2003 ◽  
Vol 209 ◽  
pp. 113-120 ◽  
Author(s):  
Bruce J. Hrivnak

The study of proto-planetary nebulae (PPNs) leads to a better understanding of both the preceding asymptotic giant branch and the succeeding planetary nebula phases of stellar evolution. Recent results are reviewed, emphasizing the properties of the central stars and the shape and chemistry of the nebulae. The study of PPNs is seen to be important in its own right.


1989 ◽  
Vol 131 ◽  
pp. 391-400 ◽  
Author(s):  
Alvio Renzini

Over the past decade a comprehensive, semiquantitative theoretical scenario for the final evolutionary stages of low and intermediate mass stars has been progressively elaborated and refined. It concerns the envelope ejection terminating the Asymptotic Giant Branch (AGB) phase, the AGB to Planetary Nebula (PN) transition, the fading and possible rejuvenation of PN nuclei, the formation processes of hydrogen-deficient stars, and the final production of white dwarfs (WD) of the DA and non-DA varieties (Renzini 1979, 1981a, 1981b, 1982, 1983, Iben & Renzini 1983, Iben et al. 1983, Iben 1984, 1985, 1987, Iben & Tutukov 1984, Iben & MacDonald 1985, 1986). In developing this scenario several important results of stellar evolution and hydrodynamical calculations have been incorporated, including in particular those of Paczynski (1971), Wood (1974), Härm & Schwarzschild (1975), Schönberner (1979, 1983), and Tuchman, Sack & Barkat (1979).


1995 ◽  
Vol 166 ◽  
pp. 173-180
Author(s):  
P. Thejll

A review is given of the use of high-accuracy astrometry on research on white dwarfs and the hot subdwarfs and central stars of planetary nebulae (CSPN). Predictions are made about the expected impact of HIPPARCOS, and the possible impacts of GAIA and ROEMER. Discovery of large numbers of new white dwarfs is expected, and, for the more distant hot subdwarfs and CSPN, important refinements of our current understanding of these objects. For white dwarfs independent values of mass and radius may be accurate enough to allow new understanding of the internal composition.


1993 ◽  
Vol 155 ◽  
pp. 480-480
Author(s):  
C.Y. Zhang ◽  
S. Kwok

Making use of the results from recent infrared and radio surveys of planetary nebulae, we have selected 431 nebulae to form a sample where a number of distance-independent parameters (e.g., Tb, Td, I60μm and IRE) can be constructed. In addition, we also made use of other distance-independent parameters ne and T∗ where recent measurements are available. We have investigated the relationships among these parameters in the context of a coupled evolution model of the nebula and the central star. We find that most of the observed data in fact lie within the area covered by the model tracks, therefore lending strong support to the correctness of the model. Most interestingly, we find that the evolutionary tracks for nebulae with central stars of different core masses can be separated in a Tb-T∗ plane. This implies that the core masses and ages of the central stars can be determined completely independent of distance assumptions. The core masses and ages have been obtained for 302 central stars with previously determined central-star temperatures. We find that the mass distribution of the central stars strongly peaks at 0.6 M⊙, with 66% of the sample having masses <0.64 MM⊙. The luminosities of the central stars are then derived from their positions in the HR diagram according to their core masses and central star temperatures. If this method of mass (and luminosity) determination turns out to be accurate, we can bypass the extremely unreliable estimates for distances, and will be able to derive other physical properties of planetary nebulae.


Author(s):  
T M Lawlor

Abstract We present stellar evolution calculations from the Asymptotic Giant Branch (AGB) to the Planetary Nebula (PN) phase for models of initial mass 1.2 M⊙ and 2.0 M⊙ that experience a Late Thermal Pulse (LTP), a helium shell flash that occurs following the AGB and causes a rapid looping evolution between the AGB and PN phase. We use these models to make comparisons to the central star of the Stingray Nebula, V839 Ara (SAO 244567). The central star has been observed to be rapidly evolving (heating) over the last 50 to 60 years and rapidly dimming over the past 20–30 years. It has been reported to belong to the youngest known planetary nebula, now rapidly fading in brightness. In this paper we show that the observed timescales, sudden dimming, and increasing Log(g), can all be explained by LTP models of a specific variety. We provide a possible explanation for the nebular ionization, the 1980’s sudden mass loss episode, the sudden decline in mass loss, and the nebular recombination and fading.


In the last year or two there has been a remarkable increase in the interest, both popular and scientific, in the subject of climatic change. This stems from a recognition that even a highly technological society is vulnerable to the effects of climatic fluctuations and indeed may become more so, as margins of surplus food production are reduced, and nations become more interdependent for their food supply. In this respect our concern is with quite small changes - a degree (Celsius) or less in temperature and 10 % or so in rainfall. Probably we may discount some of the more alarmist suggestions of an imminent and rapid change towards near glacial conditions as these are based on very sketchy evidence. However, whatever the time-scale of climatic fluctuations with which we are concerned, we may hope to learn a great deal which is relevant to the factors which will control our future climate from the study of its more extreme vagaries in the past. Information relevant to the weather in such extreme periods is coming forward in increasing detail and volume from a wide range of disciplines. The variety of the evidence, its lack of precision as a strict measure of climate, and the number of different sources all make it difficult for an individual to build up a clear picture of past climates. However such a picture is needed, if explanations and interpretation are to be possible. Ideally one would need a synchronous picture of the climate of the whole world at selected epochs in the past. Various international programmes are directed to forming such pictures.


2020 ◽  
Vol 640 ◽  
pp. A10
Author(s):  
W. A. Weidmann ◽  
M. B. Mari ◽  
E. O. Schmidt ◽  
G. Gaspar ◽  
M. M. Miller Bertolami ◽  
...  

Planetary nebulae represent a potential late stage of stellar evolution, however, their central stars (CSPNe) are relatively faint and, therefore, pertinent information is available for merely < 20% of the Galactic sample. Consequently, the literature was surveyed to construct a new catalogue of 620 CSPNe featuring important spectral classifications and information. The catalogue supersedes the existing iteration by 25% and includes physical parameters such as luminosity, surface gravity, temperature, magnitude estimates, and references for published spectra. The marked statistical improvement enabled the following pertinent conclusions to be determined: the H-rich/H-poor ratio is 2:1, there is a deficiency of CSPNe with types [WC 5-6], and nearly 80% of binary central stars belong to the H-rich group. The last finding suggests that evolutionary scenarios leading to the formation of binary central stars interfere with the conditions required for the formation of H-poor CSPN. Approximately 50% of the sample with derived values of log L⋆, log Teff, and log g, exhibit masses and ages consistent with single stellar evolutionary models. The implication is that single stars are indeed able to form planetary nebulae. Moreover, it is shown that H-poor CSPNe are formed by higher mass progenitors. The catalogue is available through the Vizier database.


1997 ◽  
Vol 180 ◽  
pp. 230-230
Author(s):  
S.K. Górny ◽  
K. Gȩsicki ◽  
A. Acker

The main aim of this work was to confirm that expansion of planetary nebulae surrounding Wolf-Rayet type central stars is characterized by turbulent motions or strong variations of velocity in the radial direction relative to the nucleus. Such properties have already been found in Ml-25, M3-15 and Pel-1 by Gesicki & Acker (1995). We have analyzed the photoionization structure and velocity field of the NGC 40 - a planetary nebula with late type ([WC 8]) Wolf-Rayet nucleus. The spectra of Hα and [NII] lines have been obtained with the 1.5m telescope at the Observatoire de Haute-Provence. The spectrograph Aurelie with dispersion of 5Å/mm and a 3″ circular entrance was used. The method and the details of the applied computer codes are published in Gesicki et al. (1996).


Sign in / Sign up

Export Citation Format

Share Document