scholarly journals MHD Simulation of Chromospheric Evaporation in a Solar Flare Based on Magnetic Reconnection Model

1998 ◽  
Vol 188 ◽  
pp. 213-214
Author(s):  
T. Yokoyama ◽  
K. Shibata

Two-dimensional magnetohydrodynamic simulation of a solar flare is performed using a newly developed MHD code including nonlinear anisotropic heat conduction effect (Fig. 1; Yokoyama & Shibata 1997a). The numerical simulation starts with a vertical current sheet which is line-tied at one end to a dense chromosphere. The flare energy is released by the magnetic reconnection mechanism stimulated initially by the resistivity perturbation in the corona. The released thermal energy is transported into the chromosphere by heat conduction and drives chromospheric evaporation. Owing to the heat conduction effect, the adiabatic slow-mode MHD shocks emanated from the neutral point are dissociated into conduction fronts and isothermal shocks (Yokoyama & Shibata 1997b). Temperature and derived soft X-ray distributions are similar to the cusp-like structure of long-duration-event (LDE) flares observed by the soft X-ray telescope aboard Yohkoh satellite. On the other hand density and radio maps show a simple loop configuration which is consistent with the observation with Nobeyama Radio Heliograph. Two interesting new features are found. One is a pair of high density humps on the evaporated plasma loops formed at the collision site between the reconnection jet and the evaporation flow. The other is the loop-top blob behind the fast-mode MHD shock.

2001 ◽  
Vol 203 ◽  
pp. 344-346
Author(s):  
T. Yokoyama ◽  
K. Akita ◽  
T. Morimoto ◽  
K. Inoue ◽  
J. Newmark

We find an important piece of evidence for magnetic reconnection inflow in a flare on March 18, 1999. The flare occurred on the north-east limb, displaying a nice cusp-shaped soft X-ray loop and a plasmoid ejection typical for the long-duration-events. As the plasmoid is ejected, magnetic reconnection occurs at the disconnecting point. A clear ingoing pattern toward the magnetic X-point is seen. The velocity of this apparent motion is about 5 km sec−1, which is an upper limit on reconnection inflow speed. Based on this observation, we derive the reconnection rate as MA = 0.001 − 0.03, where MA is a Alfvén Mach number of the inflow.


2020 ◽  
Vol 900 (1) ◽  
pp. 17 ◽  
Author(s):  
Sijie Yu ◽  
Bin Chen ◽  
Katharine K. Reeves ◽  
Dale E. Gary ◽  
Sophie Musset ◽  
...  

2014 ◽  
Vol 797 (2) ◽  
pp. L14 ◽  
Author(s):  
Hui Tian ◽  
Gang Li ◽  
Katharine K. Reeves ◽  
John C. Raymond ◽  
Fan Guo ◽  
...  

2015 ◽  
Vol 81 (5) ◽  
Author(s):  
Carlo Nipoti ◽  
L. Posti ◽  
S. Ettori ◽  
M. Bianconi

Clusters of galaxies are embedded in halos of optically thin, gravitationally stratified, weakly magnetized plasma at the system’s virial temperature. Owing to radiative cooling and anisotropic heat conduction, such intracluster medium (ICM) is subject to local instabilities, which are combinations of the thermal, magnetothermal and heat-flux-driven buoyancy instabilities. If the ICM rotates significantly, its stability properties are substantially modified and, in particular, also the magnetorotational instability (MRI) can play an important role. We study simple models of rotating cool-core clusters and we demonstrate that the MRI can be the dominant instability over significant portions of the clusters, with possible implications for the dynamics and evolution of the cool cores. Our results give further motivation for measuring the rotation of the ICM with future X-ray missions such as ASTRO-H and ATHENA.


Nature ◽  
1994 ◽  
Vol 371 (6497) ◽  
pp. 495-497 ◽  
Author(s):  
S. Masuda ◽  
T. Kosugi ◽  
H. Hara ◽  
S. Tsuneta ◽  
Y. Ogawara

Sign in / Sign up

Export Citation Format

Share Document